

Competent Person's Report

Conducted for

IGas Energy plc

Ву

Allan Spencer, Peter Wright, Barry Squire

Final

K12IGA003L

December 2012

SENERGY (GB) LIMITED

(A subsidiary of Senergy Oil & Gas Limited)

39 CHARING CROSS ROAD LONDON WC2H 0AR UNITED KINGDOM

T: +44 20 7025 6750 F: +44 20 7025 6751 E: info.uk@senergyworld.com

REGISTERED IN SCOTLAND SC 125513 REGISTERED OFFICE: 15 BON ACCORD CRESCENT ABERDEEN AB11 6DE

Senergy (GB) Limited is also registered to OHSAS 18001

BS EN ISO 14001

Author

Allan Spencer, Peter Wright

Technical Audit

Barry Squire

Quality Audit

Jennifer Ives

Release to Client

Barry Squire

Date Released 19th December 2012

Senergy has made every effort to ensure that the interpretations, conclusions and recommendations presented herein are accurate and reliable in accordance with good industry practice and its own quality management procedures. Senergy does not, however, guarantee the correctness of any such interpretations and shall not be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation or recommendation made by any of its officers, agents or employees.

The Directors
IGas Energy plc
7 Down Street
London W1J 7AJ
United Kingdom

19th December 2012

Dear Sirs,

In accordance with the instructions of the Directors of IGas Energy plc ("IGas", or "the Client"), Senergy (GB) Limited ("Senergy") has reviewed the interests that IGas holds in its onshore UK oil and gas producing assets and which were acquired in 2011. The assets evaluated are listed overleaf and comprise producing fields in the assets. IGas has a 100% equity interest and operatorship in most licences, apart from a few small fields that are operated under a Joint Venture agreement.

Senergy was requested to provide an update to its 1st January 2012 independent evaluation of the recoverable hydrocarbons expected for each asset categorised in accordance with the 2007 Petroleum Resources Management System prepared by the Oil and Gas Reserves Committee of the Society of Petroleum Engineers ("SPE") and reviewed and jointly sponsored by the World Petroleum Council ("WPC"), the American Association of Petroleum Geologists ("AAPG") and the Society of Petroleum Evaluation Engineers ("SPEE").

Recoverable volumes are expressed as gross and / or net technical reserves or resources. Gross reserves or resources are defined as the total estimated petroleum to be produced from the fields evaluated from 1st July 2012. Net reserves or resources are defined as that portion of the gross reserves or resources attributable to the interests owned by IGas.

Standard geological and engineering techniques accepted by the petroleum industry were used in estimating recoverable hydrocarbons. These techniques rely on engineering and geo-scientific interpretation and judgement; hence the resources included in this evaluation are estimates only and should not be construed to be exact quantities. It should be recognised that such estimates of hydrocarbon resources may increase or decrease in future if there are changes to the technical interpretation, economic criteria or regulatory requirements. As far as Senergy is aware there are no special factors that would affect the operation of the assets and which would require additional information for their proper appraisal.

The content of this update report and our estimates of reserves and resources are based on new production and cost data provided to us by IGas. Site visits have not been undertaken for this update. Senergy confirms that to our knowledge there has been no material change of circumstances or available information since the report was compiled.

Senergy acknowledges that this report may be included in its entirety, or portions of this report summarised, in documents prepared by IGas and its advisers in connection with commercial or financial activities and that such documents, together with this report, may be filed with any stock exchange and other regulatory body and may be published electronically on websites accessible by the public, including a website of IGas.

Executive Summary

This report comprises an independent evaluation of the recoverable hydrocarbons for the interests IGas holds in onshore UK oil and gas assets and that were acquired by IGas in 2011. The assets evaluated comprise producing fields. IGas holds a working interest in most licences of 100% as well as has operatorship of all licences. The interest holdings of IGas are provided in **Table 1.1**. IGas also owns Coal Bed Methane ("CBM") and shale gas assets in UK licences. These assets have not been included as part of this CPR update.

The volumes reported in the summary tables are those within the licence attributable to the production share of IGas. The individual resources descriptions provide the gross whole field volumes and the volume distribution range for the resources for each opportunity. Where appropriate, gas resources have been converted to an oil equivalent using 5.8 Mscf = 1 boe.

The assets reviewed in this CPR comprise of 24 producing oil and gas fields in the Weald Basin and in the East Midlands area. The latter area stretches from the East Midlands Shelf to the Gainsborough Trough and the Widmerpool Gulf. The reservoirs are found within the Upper and Basal successions of the Carboniferous era with Westphalian and Namurian sandstones being the main reservoir horizons.

The Weald Basin is located onshore in Southern England north of the Isle of Wight. The earliest phase of oil migration occurred towards the end of the Lower Cretaceous, the reservoirs are sealed by the Purbeck anhydrite, the Kimmeridge Clay and the Oxford Clay for the Portland Beds, Corallian and Great Oolite reservoirs respectively. The Great Oolite interval is by far the dominant reservoir in the Weald Basin. All fields are mature producing assets and many have a water cut of 50% or more.

The data available for this CPR update was limited to historic oil and water production, historic and indicative future cost data, beyond the data that was already available for the Senergy 1st January 2012 CPR and November 2011 CPR which includes a third party CPR on the assets dating from 2007. Neither seismic, static models, nor HIIP estimates were provided. As such, forecasts and reserves estimates have largely been based on Decline Curve Analysis. A summary of the Reserves and Contingent Resources is provided in the two tables below. A breakdown of Reserves and Contingent Resources by field is provided in **Table 1.2.**

Resources Net to IGas ¹					
Proved plus Probable (2P) 2C ²					
Volume Oil (MMstb)	Reserves	Contingent Resources			
UK producing assets	10.03	5.04			
Total Oil (MMstb)	10.03	5.04			
Volume Gas (Bscf) ³					
Gainsborough/Beckingham	5.92	N/A			
Albury	2.20	N/A			
Total Gas (Bscf)	8.12	N/A			
Total Hydrocarbons (MMboe)	11.43	5.04			

Reserves Net to IGas							
Asset	Proved (1P)	Proved plus Probable plus Possible (3P)					
Volume Oil (MMstb)							
UK producing assets	7.16	10.03	13.49				
Total Oil (MMstb)	7.16	10.03	13.49				
Volume Gas (Bscf)							
Gainsborough/Beckingham	3.62	5.92	7.12				
Albury	0.70	2.20	2.70				
Total Gas (Bscf)	4.32	8.12	9.82				
Total Hydrocarbons (MMboe)	7.90	11.43	15.18				

The licences on a number of these fields were due to expire in the near future and if applying PRMS rules strictly, Senergy would not be able to assign Reserves to such resources. However, we have received reassurance from IGas that these licences are very likely to be extended in a straightforward manner and as such Senergy has not discounted any resources on this basis.

The produced gas is currently mostly used to generate power for internal consumption and into the UK grid. Due to power generation capacity limitations only a limited amount of gas has been produced in the recent past. Whilst this has affected the production profiles for the remaining resources, Senergy has not discounted these resources and classified them as Reserves, because Senergy believes that these resources can easily find a way into the UK market. IGas is finalising an updated development plan for Albury.

The total un-risked pre-tax Net Present Values (NPVs) using a 10% discount rate associated with these reserves have been calculated and are presented below.

¹ The proportion of gross commercial reserves, resources or value for the attributable interests of IGas.

 $^{^2}$ 2C: in a resource size distribution this is the Base case or P_{50} (50% probability) or Mean volume. This is defined for each asset in the body of the report.

³ Commercial gas reserves are calculated on the basis of the gas being used as fuel to generate power and this power being sold in the market

	IGas Net Attributable pre-tax NPV10 (£ΜΜ)				
	Proved (1P)	Proved plus Probable (2P)			
\$112.89/bbl 0% inflation	130.2	197.2			

Additional income from the handling of third party products was not included but was estimated in June 2012 to have an NPV of approximately £2.8MM over the remaining life of the related fields.

Assessment Approach and Standards Applied

The technically recoverable volumes presented in this report are based on a review of the independent interpretations conducted on the assets.

Reserves and resources are reported at estimated economic or technical cut-off rates agreed with IGas and are otherwise derived according to the 2007 Petroleum Resources Management System prepared by the Oil and Gas Reserves Committee of the Society of Petroleum Engineers ("SPE") and reviewed and jointly sponsored by the World Petroleum Council ("WPC"), the American Association of Petroleum Geologists ("AAPG") and the Society of Petroleum Evaluation Engineers ("SPEE").

Professional Qualifications

Senergy (GB) Limited is a privately owned independent consulting company established in 1990, with offices in Aberdeen, London, Stavanger, Abu Dhabi, Kuala Lumpur, and Perth. The company specialises in petroleum reservoir engineering, geology and geophysics and petroleum economics. All of these services are supplied under an accredited ISO9001 quality assurance system. Except for the provision of professional services on a fee basis, Senergy has no commercial arrangement with any person or company involved in the interest that is the subject of this report.

J Allan Spencer is a Qualified Reserves Auditor for Senergy and was responsible for supervising this evaluation. He is a professional petroleum engineer with over 43 years of oil industry experience gained in major international companies and within Senergy. He is a member of the Energy Institute and of the Society of Petroleum Engineers.

J Allan Spencer, B.Sc. (Hons), E.I., SPE.

Qualified Reserves Auditor

Allan Spence

For and on behalf of Senergy (GB) Limited

Contents

1	Introduction	1	1
	1.1	Evaluation Methodology	1
	1.2	Sources of Information	1
	1.3	Concession Details	2
	1.4	Requirements	2
	1.5	Standards Applied	
	1.6	No Material Change	
	1.7	Site Visit	
	1.8	Liability	
	1.9	Consent	
2		Assessment	
۷	2.1	Data Available	
	2.2	Methodology	
	2.3	East Midland Fields	
	2.3.1	Bothamsall	
	2.3.2	Cold Hanworth	
	2.3.3 2.3.4	Corringham East Glentworth	
	2.3.4	Egmanton	
	2.3.6	Gainsborough / Beckingham	
	2.3.7	Glentworth	
	2.3.8	Long Clawson	
	2.3.9	Nettleham	
	2.3.10	Rempstone	
	2.3.11	Scampton	
	2.3.12	Scampton North	
	2.3.13 2.3.14	Stainton	
	2.3.14	Welton	
	2.4	Weald Basin Fields	
	2.4.1	Albury	
	2.4.2	Avington	
	2.4.3	Bletchingley	
	2.4.4	Goodworth	
	2.4.5	Horndean	
	2.4.6	Palmers Wood	
	2.4.7	Storrington	
_	2.4.8	Stockbridge	
3	•	and Economics	
	3.1	Introduction	
	3.2	Operations Overview	
	3.2.1	East Midlands	
	3.2.2	Weald Basin	
	3.2.3	Capex and SC % A	
	3.2.4 3.2.5	Opex and SG&AAbandonment Costs	
	3.3	Economics Methodology	
		5 ,	
	3.4	Product prices	
	3.5	Fiscal regime	
	3.6	Equity Interests	
	3.7	Economic Results	
4		S	
5	Nomenclati	ure	28

List of Tables

Table 1.1	IGas Licence Interests
Table 1.2	Gross and Net Reserves & Resources
Table 2.1	Profiles – Bothamsall
Table 2.2	Profiles – Cold Hanworth
Table 2.3	Profiles – Corringham
Table 2.4	Profiles – East Glentworth
Table 2.5	Profiles – Egmanton
Table 2.6	Profiles - Gainsborough/Beckingham
Table 2.7	Profiles – Glentworth
Table 2.8	Profiles – Long Clawson
Table 2.9	Profiles – Nettleham
Table 2.10	Profiles – Rempstone
Table 2.11	Profiles – Scampton
Table 2.12	Profiles – Scampton North
Table 2.13	Profiles – Stainton
Table 2.14	Profiles – South Leverton
Table 2.15	Profiles – Welton
Table 2.16	Gas Profiles – Albury
Table 2.17	Profiles – Avington
Table 2.18	Profiles – Bletchingley
Table 2.19	Profiles – Goodworth
Table 2.20	Profiles – Horndean
Table 2.21	Profiles – Palmers Wood
Table 2.22	Profiles – Storrington
Table 2.23	Profiles – Stockbridge
Table 2.24	Gas Profiles – Gainsborough / Beckingham

List of Figures

Figure 1.1	Location Map - East Midlands Assets
Figure 1.2	Location Map - Weald Basin Assets
Figure 2.1	East Midland Fields
Figure 2.2	Bothamsall Production History
Figure 2.3	Bothamsall Forecast
Figure 2.4	Cold Hanworth Production History
Figure 2.5	Cold Hanworth Forecast
Figure 2.6	Corringham Production History
Figure 2.7	Corringham Forecast
Figure 2.8	East Glentworth Production History
Figure 2.9	East Glentworth Forecast
Figure 2.10	Egmanton Production History
Figure 2.11	Egmanton Forecast
Figure 2.12	Gainsborough/Beckingham Top Eagle Sandstone Depth Map
Figure 2.13	Gainsborough/Beckingham Production History
Figure 2.14	Gainsborough Production & Water Injection History
Figure 2.15	Beckingham Production & Water Injection History
Figure 2.16	Gainsborough/Beckingham Forecast
Figure 2.17	Glentworth Production History
Figure 2.18	Glentworth Forecast
Figure 2.19	Glentworth – Increase in Production in 2009
Figure 2.20	Long Clawson Production History
Figure 2.21	Long Clawson Forecast
Figure 2.22	Long Clawson Increase in Production in 2008
Figure 2.23	Nettleham Production History
Figure 2.24	Nettleham Forecast
Figure 2.25	Rempstone Production History
Figure 2.26	Rempstone Forecast

igure 2.27	Scampton Production History
Figure 2.28	Scampton Forecast
igure 2.29	Scampton North Production History
Figure 2.30	Scampton North Forecast
Figure 2.31	Stainton Production History
Figure 2.32	Stainton Forecast
Figure 2.33	South Leverton Production History
Figure 2.34	South Leverton Forecast
Figure 2.35	Welton Production History
Figure 2.36	Welton Forecast
Figure 2.37	Weald Basin Fields
Figure 2.38	Albury Material Balance
igure 2.39	Avington Production History
Figure 2.40	Avington Forecast
Figure 2.41	Bletchingley Production History
igure 2.42	Bletchingley Forecast
igure 2.43	Goodworth Production History
igure 2.44	Goodworth Forecast
Figure 2.45	Horndean Production History
igure 2.46	Horndean Forecast
igure 2.47	Palmers Wood Production History
igure 2.48	Palmers Wood Forecast
igure 2.49	Storrington Production History
Figure 2.50	Storrington Forecast
Figure 2.51	Stockbridge Production History
igure 2.52	Stockbridge Forecast

Appendix

Appendix 1 Certificate of Qualification of Oil and Gas Reserves Auditor

1 Introduction

This report was prepared by Senergy (GB) Limited ("Senergy") in November 2012 at the request of the Directors of IGas. It consists of an evaluation of the interests held by IGas in the onshore UK oil and gas producing assets that IGas acquired in 2011 (Figure 1.1 and Figure 1.2). The data available for review varied depending on the asset and is noted in the body of the report for each asset.

Senergy was requested to provide an update to its independent evaluation of the recoverable hydrocarbons expected for each asset based on production to 30th June 2012. The report details the concession interests (**Table 1.1**) and the reserves and contingent resources attributable to the assets (**Table 1.2**).

1.1 Evaluation Methodology

Standard geological and engineering techniques accepted by the petroleum industry were used in estimating recoverable hydrocarbons. These techniques rely on engineering and geo-scientific interpretation and judgement; hence the resources included in this evaluation are estimates only and should not be construed to be exact quantities. It should be recognised that such estimates of hydrocarbon resources may increase or decrease in future if there are changes to the technical interpretation, economic criteria or regulatory requirements.

The Proved (1P), Proved plus Probable (2P) and Proved plus Probable plus Possible (3P) volume estimates have been derived using a deterministic approach for respectively a Low, Best and High future recovery estimate as explained in **Section 2**. The PRMS standards and guidelines have been applied to this evaluation.

In this report gas volumes are reported in billions of standard cubic feet (Bscf), condensate and oil volumes in millions of stock tank barrels (MMstb).

The AIM definition of Risk Factor for Contingent Resources is the estimated chance, or probability, that the volumes will be commercially extracted.

1.2 Sources of Information

In conducting this review we have utilised information and interpretations supplied by IGas, comprising petroleum and water production data, geological, geophysical, engineering and other technical data and cost and commercial data presented by the operator. We have reviewed the information provided and modified assumptions where we considered this to be appropriate. We have accepted, without independent verification, the accuracy and completeness of this data.

Senergy has had access to a set of interpreted data and has not attempted a systematic review of raw data (either well logs or seismic) but has performed a critical assessment of the existing interpretation work supplied in the database. This interpretation of the assets has largely focused on previous interpretations by third parties and on decline curve analysis based on historical production data. The database available for each asset is described in more detail in the field description sections of this report.

1.3 Concession Details

The assets are located onshore UK (**Figure 1.1** and **Figure 1.2**). **Table 1.1** provides details of the licences held by IGas. Although a number of licences on the assets will expire before the expected end of economic field life, IGas management has assured Senergy that it is very likely that these licences will be extended or renewed by the UK authorities. We have therefore not cut-off our production profiles or revenue estimates based on licence terminations. However, we advise the investor to perform his own due diligence in this regard.

1.4 Requirements

In accordance with your instructions to us we confirm that:

- We are professionally qualified and a member in good standing of a self-regulatory organisation of engineers and / or geoscientists;
- We have at least five years relevant experience in the estimation, assessment and evaluation of oil and gas assets;
- We are independent of IGas, their directors, senior management and advisers;
- We will be remunerated by way of a time-based fee and not by way of a fee that is linked to the Admission or value of IGas or of the Star Assets;
- We are not a sole practitioner;
- We have the relevant and appropriate qualifications, experience and technical knowledge to appraise professionally and independently the assets, being all assets, concessions, joint ventures or other arrangements owned by IGas or proposed to be exploited or utilised by it ("Assets") and liabilities, being all liabilities, royalty payments, contractual agreements and minimum funding requirements relating to the IGas' work programme and Assets ("Liabilities").

1.5 Standards Applied

In compiling this report we have used the definitions and guidelines set out in the 2007 Petroleum Resources Management System prepared by the Oil and Gas Reserves Committee of the Society of Petroleum Engineers (SPE) and reviewed and jointly sponsored by the World Petroleum Council (WPC), the American Association of Petroleum Geologists (AAPG) and the Society of Petroleum Evaluation Engineers (SPEE). The results of this work have been presented in accordance with the requirements of AIM, a Market operated by the London Stock Exchange, in particular as described in the "Note for Mining and Oil and Gas Companies - June 2009".

1.6 No Material Change

Senergy confirms that to its knowledge there has been no material change of circumstances or available information since the report was compiled and we are not aware of any significant matters arising from our evaluation that are not covered within this report which might be of a material nature with respect to the proposed admission.

1.7 Site Visit

Site visits to the Star UK operations have been conducted as part of the 2011 CPR. No site visits have been conducted for this update report.

1.8 Liability

All interpretations and conclusions presented herein are opinions based on inferences from geological, geophysical, engineering or other data. The report represents Senergy's best professional judgment and should not be considered a guarantee of results. The use of this material and report is at the user's own discretion and risk.

1.9 Consent

We hereby consent, and have not revoked such consent to:

- the inclusion of this report, and a summary of portions of this report, in documents prepared by IGas and their advisers;
- the filing of this report with any stock exchange and other regulatory authority;
- the electronic publication of this report on websites accessible by the public, including a website of IGas; and
- the inclusion of our name in documents prepared in connection commercial or financial activities.

The report relates specifically and solely to the subject assets and is conditional upon various assumptions that are described herein. The report must therefore, be read in its entirety. This report was provided for the sole use of IGas on a fee basis. Except with the express written consent of Senergy this report may not be reproduced or redistributed, in whole or in part, to any other person or published, in whole or in part, for any other purpose.

2 Technical Assessment

2.1 Data Available

Production data for 24 fields for 1H 2012 was provided on a field-by-field basis, over and above the data that was already in Senergy's possession as part of the 2011 CPR and the 1st January 2012 Update CPR (**References i and ii**). These new data were usually provided as an average daily oil production rate for the month, a water cut and cumulative oil production volume. In some cases monthly production volumes were provided instead of average daily rates. Production data were not available for the Albury Gas Field.

Besides the production and injection data, the other key piece of technical information available was an independent Reserves Evaluation Report conducted by RPS in 2008. This report has been relied on for most of the historical background and geological understanding about these fields in this CPR.

There was no documentation available to review the sub-surface details of the fields and the uncertainties associated with them. Considering the mature nature of most of the fields, Senergy's analysis has relied on the available production performance of the fields. As such, no assessment of prospective resources could be done. Contingent Resources have been analysed based on the resources in the RPS report and on any reported developments since. With the exception of the Avington field, no development plans were provided.

2.2 Methodology

Senergy has primarily based its evaluation on Production Decline Curve Analysis ("DCA"). This has been done on a field basis using average daily production rates for each month. It has been assumed that effects of downtime, routine maintenance work and other such activity are, by their nature, implicit in this average production history.

The methodology followed in this DCA covers a range of production forecasts based on historical and / or recent production performance of the individual fields. This range of forecasts is categorised as Proved (1P), Proved plus Probable (2P) and Proved plus Probable plus Possible (3P) based on the level of uncertainty attached to each in accordance with the PRMS definitions. Apart from where indicated otherwise, this range has been generated using an exponential type of decline for the 1P and 2P cases, and hyperbolic decline for the 3P cases.

The production forecast profiles reported in this section are projecting 34 years and assuming 100% equity. Profiles have been provided in **Tables 2.1** through to **2.24** and result in Technical Reserves as specified in the following paragraphs. For Commercial Reserves calculations, economic or commercial cut-offs have been applied (**Table 1.2**).

Contingent resources categorised by RPS have been reviewed and commented upon. Upside opportunities, that cannot currently be categorised by the above range, have been identified where possible. Senergy did not develop production profiles for the Contingent Resources. Neither has Senergy added any incremental activity into the development plan and related economics to account for the development of Prospective Resources.

2.3 East Midland Fields

The East Midlands area stretches from the East Midlands Shelf to the Gainsborough Trough and the Widmerpool Gulf (**Figure 2.1**). The fields included in this analysis from this area are Bothamsall, Cold Hanworth, Corringham, East Glentworth, Egmanton, Gainsborough / Beckingham, Glentworth, Long Clawson, Nettleham, Rempstone, Scampton, Scampton North, Stainton, South Leverton and Welton.

The East Midlands reservoirs are found within the Upper and Basal successions of the Carboniferous era with Westphalian and Namurian sandstones being the main reservoir horizons. These are regionally extensive and represent a series of stacked fluvial channels within a deltaic environment. The traps are fault controlled and associated with the formation of the NE-SW Gainsborough Trough.

All these fields are mature producing assets with extensive production history data available. Many of the fields have wells that are producing at 50% water cut or more. There may be infill and sidetrack opportunities that still exist for some fields.

2.3.1 Bothamsall

Bothamsall lies in a highly faulted structure and produces from the lower Westphalian Sub-Alton and the Crawshaw sandstone. The Sub-Alton sandstone is thicker on the northern flank and gets thinner and inter-bedded with shales and mudstone in the south. It is the most prolific producing reservoir in the field. The Crawshaw sand is interpreted as a fluvial body and shows general thickening southwards.

Bothamsall was discovered in 1958 and thirteen wells were drilled to develop the field. Peak production of over 500 standard barrels of oil per day (bopd) was achieved in 1966 and since then the field has produced at steady decline. For the past 10 to 15 years the production decline trend has flattened and water cut has steadily risen to 60%.

Currently the field produces between 30 to 40 bopd typically and is expected to continue on this trend in the near future assuming nothing changes in terms of producing wells and facility operations. The production history of the field is presented in **Figure 2.2**. Gas production data were unavailable for Bothamsall.

Until the end of June 2012, the field had produced a total of 3.126 MMbbl. There are currently no known plans of drilling any firm future wells.

Bothamsall is towards the latter stage of its decline and remaining potential is limited. Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.1** and **Figure 2.3**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Bothamsall	0.178	0.249	0.313	N/A

The Namurian Chatsworth Grit, which is a deeper sand, has also tested oil on this structure and may hold upside potential for this field.

2.3.2 Cold Hanworth

Cold Hanworth was discovered in April 1996 and produces from the Westphalian Basal Succession sand unit. Significant fracture system exists at and around the crest of the structure which has resulted in high water production from crestal well CH-07.

The field came on production at around 350 bopd and peaked at around 500 bopd in 2003. Since then it has shown a largely steady decline with current production levels between 80 to 100 bopd with water cuts of over 70%. GOR has remained quite uniform and at low levels in the past. Field production history of the field is given in **Figure 2.4**.

Until the end of June 2012, the field had produced a total of 0.861 MMbbl of oil.

There is a chance of well failure because of increase in water production through the fracture network which could lead to loss of current production levels. Typical oil quality is about 28° API. There are currently no known firm plans of drilling any future wells.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.2** and **Figure 2.5**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Cold Hanworth	0.116	0.166	0.374	N/A

2.3.3 Corringham

The Corringham field was discovered in 1958. Field appraisal demonstrated that the Corringham structure contained a number of possible reservoir zones within three main fault blocks. The principal producing horizons are the Silkstone and the Chatsworth reservoirs.

The field was shut-in from 1964 to 1973 due to legal issues. Infill drilling based on seismic and reservoir review sustained production levels around 60 bopd with a water cut of 11% up to the end of the 1980's.

There was a sharp rise in production in 1990 peaking up to 400 bopd with the drilling of the CR-12 well which was completed in the Lower Chatsworth reservoir and the CR-5 well which was hydraulically fractured in the Silkstone reservoir.

Since then the field has shown a steady decline in production even after re-instatement of water injection in 1997 (pressure depletion was confirmed for the Silkstone reservoir).

Currently the field produces at a rate of 55 to 65 bopd with 50% water cut. No gas production data is available for this field. Production history of the field is shown in **Figure 2.6**. No firm plans of any new wells are currently known. A side-track was tentatively planned by the previous operator for 2015 that could be treated as part of any Contingent Resources (associated 0.100 MMbbl).

The total oil produced from Corringham up to the end of June 2012 is 1.697 MMbbl.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.3** and **Figure 2.7**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Corringham	0.196	0.280	0.386	0.242

RPS assigned 0.242 MMbbl Contingent Resources to a sidetrack of CR-11 to a more crestal location close to the CR-7 well. This well has not yet been drilled and, therefore, the Contingent Resources remain unchanged.

2.3.4 East Glentworth

East Glentworth is an easterly extension of the Glentworth field. The structure is a four-way dip closure rollover anticline and the hydrocarbon bearing reservoir is the Westphalian C Mexborough formation.

The field was discovered in 1987 and production started in 1993. In 2004, E Glentworth-2 was drilled and started production at 120 bopd. Since then the field has followed a steady decline and currently produces between 30 to 40 bopd with a water cut of 40%. The GOR data looks very dubious and may be due to corrections realised / applied later in the life of the field. Production history for the field is shown in **Figure 2.8**. No firm plans of any new wells in the near future are known.

Cumulative oil production to end June 2012 was 0.271 MMbbl.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.4** and **Figure 2.9**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
East Glentworth	0.047	0.074	0.187	0.376

RPS assigned Contingent Resources of 0.3758 MMbbl to two new wells to drain extra reserves based on uncertainty in STOIIP. As no wells have been drilled in East Glentworth, the Contingent Resources are still in place.

2.3.5 Egmanton

Egmanton field was discovered in 1955 and produced from the Upper Namurian and Lower Westphalian A fluvial deltaic sandstones. Production peaked in 1958 at over 900 bopd. Water flooding has been used from quite early on (started in 1960) and acid stimulation was carried out on producers recently (July 2005). These have resulted in arresting the production decline over time but presently the field is in its last stages of depletion.

During the last 6 months under review, field production averaged 11 bopd, however more recently production has reverted to less than 5 bopd on average with a water cut of 60 to 70%. In total, the field has produced 3.577 MMbbl of oil until the end of June 2012. Production history of the field is presented in **Figure 2.10**. No new wells were planned at the time of RPS report and it is assumed that this still stands considering the depletion stage of this field.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.5** and **Figure 2.11**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Egmanton	0.001	0.002	0.029	N/A

Contingent Resources have not been identified for Egmanton.

2.3.6 Gainsborough / Beckingham

The Gainsborough field was discovered in 1959 and the extension, Beckingham, in 1964. The most important reservoir intervals are the Eagle Sandstone (Westphalian B), the Donald Sandstone (Westphalian A), the Flood Sandstone (Namurian) and the Condor.

Figure 2.12 shows a top structure map of the field. The field structure consists of an east-west oriented faulted anticline, tilted to the east. North Gainsborough has a gas cap at the eastern flank, which is structurally deeper than the crest of the structure, with an underlying oil leg. South West Gainsborough and East Beckingham are characterised by high quality reservoir and higher cumulative productions per well. West Beckingham is characterised by an east-west trending reservoir system divided by north-south trending faults.

Figure 2.13 presents the historical production data for the field. Oil production peaked over 1,300 bopd in the early 1980's and since then has declined relatively steadily. However, intermittent production spikes are seen which are typically reminiscent of new wells coming on stream. In early 2000, decline arrested for sometime before returning to historical trend but the exact reason for this is not known. Currently, the field is producing around 195 bopd (previously 175 bopd) with a water cut of about 60%.

As of end of June 2012, the field had produced a total of 12.264 MMbbl of oil.

There is free gas production from the gas cap besides associated gas production from the field. However, no gas production data is available as a reliable basis for DCA.

Onsite power generation provides power not only for operations but also for export to the GB grid. Nominal installed generating capacity is 8 MW, utilising approximately 1.6 MMscf/d of both free and associated gas. Current gas production is approximately 400 Mscf/d, of which 140 Mscf/d (0.7 MWh) is used internally and the remaining 260 Mscf/d (1.3 MWh) is exported into the GB grid.

Water injection has been applied in the field since 1976. Figures 2.14 and Figures 2.15 show the injection rate data compared to the production rate data for Gainsborough and

Beckingham separately. Water injection data for these fields was only available as an annual average. Therefore, it is difficult to interpret correspondence and impact between the injection and the production data.

In Gainsborough, it seems that a typical voidage replacement strategy has been followed with injecting as much liquid as produced. However, over the recent past some over-injection is observed. In Beckingham, between 1987 and 2000, quite a lot of over-injection was done and apparently as a consequence water injection was totally shut down in 2004. It has been brought back on line in Beckingham in the first half of 2011 and has apparently increased oil production rates by some 10 to 15 bopd.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. This has been done on a field level rather than on a reservoir, compartment or well level because of uncertainties in production allocation. These are presented in **Table 2.6** and **Figure 2.16**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Gainsborough/Beckingham	0.348	0.612	0.863	0.200

The previous operator carried two tentative side tracks in late 2015 and assigned 0.2 MMbbl of resources, which we have retained in this CPR. These have been recognised as Contingent Resources in this work.

For the case of gas, RPS reported that there was insufficient pressure data to perform any material balance and DCA was considered impractical due to the fact that the gas production rates were constrained by power generation requirements. They reported a range of reserves based on their evaluation of free gas initially in place and application of recovery factors.

In the last years the field has produced slightly over 100 MMscf per year and in total the field has produced 579 MMscf since 2007. The table below lists the remaining gas reserves. Profiles are depicted in **Table 2.24.**

Gross Gas Reserves (Bscf)	1P	2P	3P	Contingent Resources
Gainsborough / Beckingham	3.62	5.92	7.12	N/A

2.3.7 Glentworth

The Glentworth field was discovered in 1961. The field is a four-way dip closure and the producing reservoir is the Mexborough Rock. Following five appraisal wells, the field was shut down between 1965 and 1971. Upon recommencement of production horizontal sidetracks in 1992 and 1993 (Glentworth 1 and Glentworth 8) and new horizontal wells in 1996 and 1997 (Glentworth-10 and Glentworth-11z) yielded significant enhancements in production levels.

Currently, the field is producing typically at rates of 115 bopd with a water cut of around 60%. In total, Glentworth had produced 1.669 MMbbl of oil by the end of June 2012. Production history for the field is shown in **Figure 2.17**.

Decline Curve Analysis was applied to the recent production history to come up with a range of forecasts. These are presented in **Table 2.7** and **Figure 2.18**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Glentworth	0.545	0.673	0.857	0.288

RPS had assigned Contingent Resources of 288.3 Mbbl to Glentworth based on a new well drilled in the field, most probably a step-out to the south west area. As this well has not yet been drilled the Contingent Resources are still in place. An increase in oil production rate from approximately 125 bopd in 2008 to over 150 bopd in 2009 can be seen on the history plot (**Figure 2.19**), which was the result of successful well intervention on GL11.

2.3.8 Long Clawson

The Long Clawson field was discovered in 1986 and soon peaked at over 1,000 bopd. The field declined to rates of less than 250 bopd by 1992 and has been producing at quite stable rates since then.

The field consists of reservoirs in laterally variable delta-top sand bodies within the late Namurian Rough Rock, Longshaw Grit, Chatsworth Grit and Ashover Grit. The structure is a four-way dip closure, although the trapping mechanism probably combines structural and stratigraphic elements.

After four development wells and two re-drills, the field is currently producing at about 90 bopd with a water cut of around 20%. The production history plot is presented in **Figure 2.20**. No gas production data for the field was available.

In total, the field had produced 1.303 MMbbl by the end of June 2012.

DCA has been conducted for Long Clawson and production forecasts generated covering a range of 1P, 2P and 3P cases. These are presented in **Table 2.8** and **Figure 2.21**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Long Clawson	0.314	0.401	0.536	0.238

RPS assigned Contingent Resources of 0.2379 MMbbl to this field based on a new well proposed by the operator for 2008. No specific information on this well coming on production is available. Inspection of post 2007 production history (**Figure 2.22**) shows an increase in oil production rate from less than 120 bopd towards the end of 2007 and over 140 bopd towards

the latter half of 2008, however this is mainly because of better performance by wells A4 and C1 and no new wells came on stream during this time. Therefore we conclude that Contingent Resources identified in the RPS report still exist. The operator does not have any firm plans at present for a new well in this field.

2.3.9 Nettleham

The Nettleham field started production in 1984 from Westphalian sandstone. Wells NET-02, NET-04 and NET-06Z produced from the Basal Succession. Well NET-06Z was shut-in due to low oil production in 2005.

The field produces intermittently at less than 5 bopd and with a water cut of over 95%. Production history for the field is shown in **Figure 2.23**. The field was not producing at the time of this report.

In total, Nettleham had produced 1.575 MMbbl by the end of June 2012.

DCA has been conducted for Nettleham and production forecasts generated covering a range of 1P, 2P and 3P cases. These are presented in **Table 2.9** and **Figure 2.24**. Corresponding remaining Reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Nettleham	0.002	0.002	0.043	N/A

No Contingent Resources have been reported for Nettleham.

2.3.10 Rempstone

The Rempstone field was discovered in 1991. It consists of a series of oil and gas reservoirs in a stacked sequence of laterally variable turbidite sandstones within the early Namurian Rempstone formation. Oil is produced from the H and C sandstones. The H sand has an oil leg with a crestal gas cap and a down dip oil water contact (OWC). There is considerable uncertainty in the fluid contacts determination and hence in the oil volumes in the H sand.

In 1995, the initial wells, Rempstone-1 and -2z, were redrilled as horizontal wells and renamed as Rempstone 3 and -4, respectively. Both wells were tested by two ninety day test periods. Rempstone-1 produced 6,311 stb of oil and was completed as a C sand producer. Rempstone-2z tested 1,277 stb oil and 731 stb water during the second test but was never put on production due to mechanical problems shortly after the test.

Pressure information showed that the reservoir pressure was anomalously low in the second well (815 psia as against 920 psia in the Rempstone-1 well). The operator suggested a permeability barrier between the two wells to explain this.

Currently, Rempston-1 (or -3) produces at about 10 bopd. Water production data were unavailable but the RPS report suggested that the water cut was 80% in 2007. Therefore, Senergy concludes that the field is in its final stages of depletion. Production history is presented in **Figure 2.25**.

In total, Rempstone had produced 0.249 MMbbl of oil by the end of June 2012.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. The profiles are presented in **Table 2.10** and **Figure 2.26**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Rempstone	0.060	0.066	0.090	N/A

No Contingent Resources have been reported for Rempstone.

2.3.11 Scampton

SC-02 and SC-03 are the two producers in Scampton. The field started production in January 1996 and right away peaked at 190 bopd, but soon declined to 20 bopd. This led to field shut-down in April 1998. SC-02 came back on production in August 2001 for a period of three months before being shut-in again.

Since November 2004, SC-02 has been on production and currently produces in a slug regime with an average of around 12 bopd with water cut of 50%. Historical production is shown in **Figure 2.27**.

Cumulative oil production to the end of June 2012 is 0.101 MMbbl.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.11** and **Figure 2.28**. Corresponding remaining Reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Scampton	0.021	0.048	0.069	N/A

Contingent Resources have not been reported for Scampton.

2.3.12 Scampton North

Scampton North started producing from February 1986. Nine wells have been drilled on the structure to date. The wells produce from several units in the Basal Succession: 1, 2b, 2c, 2d, 3b.

Peak production was achieved in February 1990 at approximately 800 bopd. As of November 2007, three wells (B02, C06 and C09) were on production. Currently the field is producing at a rate of approximately 125 bopd with a water cut between 20 to 30%. Production history for the field is presented in **Figure 2.29**.

In total, the field had produced 1.976 MMbbl of oil by the end of June 2012.

DCA has been conducted for Scampton North and production forecasts generated covering a range of 1P, 2P and 3P cases. These are presented in **Table 2.12** and **Figure 2.30**. Corresponding remaining Reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Scampton North	0.524	0.678	0.903	N/A

Contingent Resources have not been reported for Scampton North.

2.3.13 Stainton

The Stainton field was discovered in 1984 and has been producing from well ST-01 since then. This well tested dry oil from an early Westphalian sandstone, now referred to as Unit 2 of the Basal Succession. Two appraisal wells, ST-2 and ST-3, drilled on the structure were unsuccessful, neither encountering hydrocarbons and the field has continued as a single well development.

Peak production was approximately 120 bopd in July 1987. Currently the field is producing approximately 10 bopd intermittently with a water cut of about 40%. Field production history is shown in **Figure 2.31**.

Cumulative production to end of June 2012 is 0.208 MMbbl.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.13** and **Figure 2.32**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Stainton	0.003	0.025	0.059	N/A

Contingent Resources have not been reported for Stainton.

2.3.14 South Leverton

The South Leverton field was discovered in 1960 with production starting in the same year and peaking in 1961 at over 200 bopd.

The field has only produced a few barrels intermittently since the start of 2011. Before it went off production in 2010, it was producing 8 bopd from one producer. Production history for the field is shown in **Figure 2.33**.

Cumulative production to end June 2012 was recorded at 0.506 MMbbl.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.14** and **Figure 2.34**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
South Leverton	0.001	0.002	0.015	N/A

Contingent Resources have not been reported for South Leverton.

2.3.15 Welton

The Welton field started production in August 1981. There have been over 60 wells drilled on the structure to date which produce from several formations; the Basal Succession consisting of several producing units, the Upper Succession consisting of the Tupton unit, and the Brinsley Abdy.

Peak production was achieved in December 1990 at approximately 3,700 bopd. Since 1997, oil production has been declining steadily. According to the RPS report, as of November 2007, 25 wells were on production and four infill sidetracks were underway. These four wells came on stream as B32, A34, B31 and B30 performing as follows:

- Welton B32 initial production was 38 bopd declining to 13 bopd today
- Welton A34 initial production 185 bopd declining to 63 bopd
- Welton B31 initial production 124 bopd declining to 24 bopd
- Welton B30 initial production 7 bopd declining to zero

Currently, the field is producing around 700 bopd with a water cut of 75%, which is significantly better than was predicted in the 2011 CPR, but this performance is not envisaged to affect the overall field performance in the long term. Production history for the field is shown in **Figure 2.35**.

Cumulative production to end June 2012 was recorded at 18.028 MMbbl.

DCA has been conducted and production forecasts generated covering a range of 1P, 2P and 3P cases. These are presented in **Table 2.15** and **Figure 2.36**. Corresponding remaining Reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Welton	1.794	2.697	3.872	0.200

RPS had assigned 0.818 MMbbl of Contingent Resources to the last two side tracks that were planned at the time of the RPS report. It was envisaged that these side tracks would produce initially between 150 to 200 bopd. However, neither of them came on with those expected rates. Therefore, Senergy concluded that the RPS assigned Contingent Resources no longer exist and that any related incremental Reserves are included in the Reserves ranges (1P to 3P) presented above.

The previous operator's forecast included two potential side tracks (each coming at 50 bopd) and 0.2 MMbbl were assigned to them by the previous operator. Senergy recognises these as Contingent Resources.

2.4 Weald Basin Fields

The Weald Basin is located onshore in Southern England north of the Isle of Wight (**Figure 2.37**) and includes the fields of Albury, Avington, Bletchingley, Goodworth, Horndean, Palmers Wood, Storrington and Stockbridge.

The earliest phase of oil migration occurred towards the end of the Lower Cretaceous, the reservoirs are sealed by the Purbeck anhydrite, the Kimmeridge Clay and the Oxford Clay for the Portland Beds, Corallian and Great Oolite reservoirs respectively. The Great Oolite interval is by far the dominant reservoir in the Weald Basin. The reservoir quality increases from east to west due to facies variation and more favourable diagenetic history. The reservoir quality is highly variable due to different phases of cementation and the best reservoir characteristics occur in well-sorted, Oolitic and skeletal grainstones and relatively clean pack-stones with porosities up to 20 per cent or more. In addition to cementation, depositional environment is also important and generally the Jurassic reservoirs exhibit better reservoir quality at the margins of the Weald Basin. All of the Jurassic oils in the Weald Basin are light crudes with API gravities in the range of 35 to 42°.

All these fields are mature producing assets, most with extensive production history data available. Many of the fields have wells that are producing at 50% water cut or more. There may be in-fill and sidetrack opportunities that still exist for some fields.

2.4.1 Albury

Production data was not available for the Albury Gas Field. Therefore, this analysis has relied on the RPS report and anecdotal evidence gathered from the operator.

In February 1994, the AL-01 well tested at 500 Mscf/d at a FTHP of 841 psia with an AOFP of some 1.7 MMscf/d. The Albury Gas Field has produced from this single well since then to an onsite electricity generation facility at an average yearly rate of between 240 and 460 Mscf/d. As of 11th October 2007, Albury had produced 1.571 Bscf at an annual average rate of approximately 320 Mscf/d over 2007.

Initial pressure for the field was measured at 1,066 psia which depleted to 789 psia in October 2007. The gas is 97.5% Methane with small amounts of CO_2 and N_2 and has a gas gravity of 0.57. Very little water has been produced from the Albury field. As of last production, Flowing Wellhead Pressure (FWP) was ca. 600 psia with a delivery pressure to the generator of 29 psia.

RPS concluded a GIIP of 5.5 Bscf based on the historical P/Z plot (**Figure 2.38**). They suggested that the ultimate recoverable reserves would depend on the well abandonment pressure and the production rate rather than the licensing terms. It was reported that the gas production rate was constrained to 0.32 MMscf/d for years. Using an ultimate recovery factor of 70% with estimated well abandonment pressure at approximately 370 psia, the maximum recoverable gas volume was calculated to be 3.8 Bscf.

The field was shut down in 2007 to do appraisal work for Gas storage in Albury. The appraisal well came back with disappointing results and gas storage plans were suspended. Historically, the gas produced from the field has been used in two gas engines to generate electricity. These are quite old and in dilapidated condition. Due to continuous operational problems with these engines, the field has not been put back on production since 2007.

Technically all the reserves reported previously are still applicable which could be brought on stream with some capital investment in infrastructure and export routes. These are presented in **Table 2.16**. Corresponding remaining reserves are as follows:

Gross Gas Reserves (Bscf)	1P	2P	3P	Contingent Resources
Albury	0.70	2.20	2.70	N/A

2.4.2 Avington

Avington is located in the western part of the Weald Basin. The field has two main reservoir areas, the 'Hanging Wall' Area, located in the down-faulted side of the 'Mid Field' fault and the 'Foot Wall' Area, located on the up thrown side of the fault.

The Winchester-1 well drilled in 1959-60 found oil shows in the Cornbrash and Great Oolite reservoirs. The Avington-1 well drilled in 1987 in the northern 'Footwall' fault block encountered a 30.5 m oil column as indicated by log and core data. However, the well was not tested. The AV-2 well was drilled in 2003 into the southern 'Hanging Wall' anticline.

Avington-2z was drilled as a horizontal sidetrack from the AV-2 pilot hole. It initially flowed 38 API oil at rates of up to 700 bopd with no water production. However, on subsequent extended well testing (between October 2003 and May 2005) using jet pumps, the dry oil zone was lost (oil rate down to 25 bopd) and very high water production was encountered which remained around 80 to 90% even after stimulation attempts.

Although disappointing, this early well performance after 6 months of 35 bopd and 90% water cut is similar to some of the poorer producing wells in the Great Oolite reservoir in the Weald Basin.

The Avington-3 well drilled in 2006 and encountered high water saturations. A sidetrack from this well, AV-3z was drilled in 2007 and produced 600 bopd on extended well test (EWT).

Avington has been on production since August 2007. The field started off with oil rates of over 500 bopd as seen in the EWT wells. However, it soon dropped drastically with increase in water production. The field remained shut in for most of 2008 and was brought back on production in 2009 with oil rates of over 150 bopd. Since then the field has produced continuously but at much lower oil rates. Currently, it produces at around 60 bopd with over 80% water cut. Production history of the field is presented in **Figure 2.39**.

In total, Avington had produced 0.157 MMbbl of oil up to the end of June 2012.

RPS had assumed a phased approach for Avington development considering the good results seen on well tests. The Phase 1 production based on a three well development was

attributed to 'Reserves' category while the Phase 2 production based on a seven well development was assigned to Contingent Resource.

It becomes evident from post 2007 field production performance that the good reservoir deliverability is because of the fracture network presence. This gives some oil flush production initially but imminently leads to considerable increase in water production which comes in very quickly through these fractures.

A DCA was performed to generate a range (1P, 2P and 3P) production forecasts. These are presented in **Table 2.17** and **Figure 2.40**. Corresponding remaining reserves are as follows:

Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Avington Gross	0.025	0.056	0.113	5.800
Avington – Net (50%)	0.012	0.028	0.057	2.900

RPS based their Contingent Resources on the Phase 2 development strategy which included seven wells with higher than usual productivity levels. RPS also reported a range of STOIIP for Avington; 25.33 MMbbl (1P), 59.09 MMbbl (2P) and 110.31 MMbbl (3P). Based on this estimate, the field has produced less than 1% of even the 1P STOIIP. Therefore, there exists considerable upside in Avington for the right development strategy which can utilise the fracture network to the benefit of oil production. In this context, RPS Contingent Resources estimates could still hold valid. Although Senergy has not performed its own analysis, it has assumed the RPS volumetric estimates and the uncertainty that may be associated with it.

2.4.3 Bletchingley

Bletchingley is the most recent field to come on production. It started producing oil in July 2009. It started off with an oil rate of about 200 bopd and produced stably before peaking to over 300 bopd in September 2010. It has since then declined back to 200 bopd and currently produces around that level with very little water production.

Historically three wells were drilled in the Bletchingley field in the sixties. One of these tested 10 MMscf/d of gas. The previous operator took control of the field in the late 1990's to develop the gas resources for power generation. The appraisal well, Bletchingley 5, however, struck oil in the Corellius Sandstone reservoir and tested at 250 bopd. A second appraisal well produced only 30 bopd on test before it was hydraulically fractured to increase production rate to 150 bopd. The field has shown little decline in pressure. Production history for the field is presented in **Figure 2.41**.

By the end of June 2012, the field had produced a total oil of 0.235 MMbbl.

The previous operator planned to drill another two wells in the field in the next five years. Bletchingley-7 was to come on line in 2012 and Bletchingley-8 was planned to come on line 2013. IGas has not included Bletchingley-7 and Bletchingley-8 in its current plans and related resource volumes have therefore not been included in this CPR.

A DCA was performed to generate a (1P, 2P, 3P) range of forecasts. These are presented in **Table 2.18** and **Figure 2.42**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Bletchingley	0.285	0.455	0.665	0.6

Contingent Resources of 0.6 MMbbl were assigned to the Bletchingley-7 and -8 wells. There is a possibility of upside potential in the area between Bletchingley and Palmers Wood which needs further investigation. Also, there is proven gas potential in the field which needs further appraisal and development, before this can be quantified.

2.4.4 Goodworth

The Goodworth field was discovered in 1987 but did not start production until the end of 1997 after drilling a horizontal side track from the discovery well. A new, longer well along the same path was drilled in 2000 after the original side track well built up internal restriction.

Initially, the field peaked in excess of 100 bopd but currently produces at approximately 25 bopd with a water cut of 60%. The production history of the field is presented in **Figure 2.43**.

At the end of June 2012, Goodworth had produced a total of 0.197 MMbbl of oil.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.19** and **Figure 2.44**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Goodworth	0.121	0.165	0.181	N/A

The Goodworth field is a Great Oolite reservoir consisting of an east-west trending horst which effectively divides the field into three main blocks. The first block is also subdivided into two sub blocks by a north-south fault. All the wells drilled so far on the structure have been re-entries of the same well bore and it is our understanding that none of the other fault blocks have been penetrated. There could be upside potential in these un-penetrated fault blocks which might be defined and quantified with more certainty resulting from more field appraisal.

2.4.5 Horndean

The Horndean field is located on an east-west trend on the south-western flank of the Weald Basin. The field has been producing since November 1987 and a total of seven wells, including horizontal sidetracks, have been drilled into the Great Oolite structure to date. Production peaked at 670 bopd in June 1993 after the drilling of well HNC-02 (as a horizontal sidetrack from the HNC-01 well).

Presently, the field produces approximately 160 bopd with a water cut of 30%. Production history of the field is shown in **Figure 2.45**.

In total, Horndean had produced 2.272 MMbbl of oil by the end of June 2012.

DCA of the recent production history has been performed and production forecast range generated for 1P, 2P and 3P cases. These are presented in **Table 2.20** and **Figure 2.46**. Corresponding remaining reserves are as follows:

Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Horndean – Gross	0.326	0.557	0.715	N/A
Horndean - Net (89.125%)	0.291	0.496	0.637	N/A

Contingent Resources have not been assigned to Horndean.

2.4.6 Palmers Wood

Discovered in 1983, the Palmers Wood field has had ten exploration, appraisal and injection wells drilled on the Corallian Sandstone structure to date. The field achieved peak production in 1991 at a rate of 1,400 bopd.

Presently, the field produces at rates between 60 and 70 bopd with a water cut of approximately 90%. Well failure may be looming because of high water cuts. Production history for the field is shown in **Figure 2.47**.

Cumulative production to end June 2012 was recorded at 3.380 MMbbl.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.21** and **Figure 2.48**. Corresponding remaining reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Palmers Wood	0.039	0.101	0.183	N/A

Contingent Resources have not been assigned to Palmers Wood.

2.4.7 Storrington

The Storrington field consists of an east-west trending tilted fault block. The reservoir is the Great Oolite formation that can be sub-divided from top down into the Upper Oolite, the Hoddington Member and the Middle and Lower Oolites. In addition there is minor net pay in the overlying Forest Marble / Cornbrash.

The field has been producing since May 1998. A peak production rate of 600 bopd declined to approximately 80 bopd by October 2001. Well ST-01 was acid stimulated during 2001 resulting in an increase of 400 bopd in production. Installation of multiphase pumps in January 2004 again increased production by 90 bopd. Since then, the field has returned to a steeper oil rate decline.

Currently, the field is producing between 40 to 60 bopd with a water cut of 88%. Production history for the field is shown in **Figure 2.49**.

In total, the field had produced 1.156 MMbbl by the end of June 2012.

Decline Curve Analysis was applied to the recent production history to determine a range of forecasts. These are presented in **Table 2.22** and **Figure 2.50**. Corresponding remaining Reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Storrington	0.011	0.026	0.124	N/A

Contingent Resources have not been assigned to Storrington.

2.4.8 Stockbridge

Stockbridge field was discovered in 1984. A total of twenty two wells have been drilled on the structure to date, some have been re-drills of existing wells.

The field structure is a low relief anticline with the reservoir comprising of limestone of the Middle Jurassic Great Oolite Group. The reservoir depth is about 3,300 ft tvdss at the crest to 3,450 ft tvdss at the flanks. A long transition zone precludes exact location of an oil water contact. The bulk of the porosity is intra-granular rather than inter-granular and isolated within voids. Permeabilities are generally low due to small pore throat sizes and poor grain interconnectivity. However, fractures in the vicinity of faults may enhance permeability. As a consequence of all of these, significant uncertainty in the field volume remains. RPS reported a STOIIP of 67 MMbbl based on the simulation model from 2007.

Owing to the nature of the porosity and the high capillary pressures in the field, much of the formation has high water saturation and wells tend to make water from the beginning of production. The exceptions are those wells that have depleted an extensive fracture system yielding high rates for a couple of years (e.g., STK-3z, STK-9). However, good production is soon followed by increased water cut reflecting ingress of oil from the matrix into a fracture system that has started to conduct water.

In order to boost production, various drilling techniques have been tried to minimise formation damage and maximise deliverability. These have mainly centred on targeted horizontal drilling and under-balanced drilling. Results have varied depending on the degree of fracturing encountered and the degree of damage and stimulation that occurred at the well bore.

A water injection pilot scheme was started in 1998 by converting well STK-16 to a water injection well. It has continued as an injector since then. STK-18 was drilled in 2001 following indication of further reserves in the north of the field. In 2006, the well STK-20 was drilled and intersected an oil saturated fracture network. It produced ca. 80 Mstb of dry oil over 3 months before increasing to ca. 90% water cut.

Currently the field is producing approximately 500 bopd with a water cut of 90%. Historical production from the field is presented in **Figure 2.51**.

By the end of June 2012, Stockbridge had produced a total of 8.268 MMbbl of oil.

DCA has been performed and production forecast range generated for 1P, 2P and 3P cases. These are presented in **Table 2.23** and **Figure 2.52**. Corresponding remaining Reserves are as follows:

Gross Technical Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Stockbridge	2.247	2.783	3.048	N/A

RPS had assigned 0.767 MMbbl of Contingent Resources to drilling of new wells in the field. Two new wells were drilled after 2007; Stockbridge-22 and Stockbridge-23. Well 22 came in with 160 bopd declining to 50 bopd while well 23 came on with 177 bopd declining to 32 bopd. Assuming that all of RPS Contingent Resources have been based on these wells, Senergy assumes that these have become part of field Reserves and are covered by the DCA performed on production history. Further information is unavailable to assign any new Contingent Resources.

3 Operations and Economics

3.1 Introduction

Although the assets have a long history of operations, little useful data was available to allow Senergy to form an opinion on this basis. The basis for Senergy's Operations review is based on a combination of factual, first hand evidence, anecdotal evidence, a site visit that was undertaken in 2011 and recent cost data provided by IGas.

3.2 Operations Overview

IGas has interests in 23 UK onshore licences in the East Midlands and the Weald Basin and is the appointed operator in 21 of the 23 licence areas. There are 105 sites with an inventory of 247 wells (of which approximately 85 are currently still in operation). It is understood that the two non-operated licences are exploration only. The operating companies in East Midlands and the Weald Basin are responsible for the day-to-day operations of the fields and are supported by central services and development teams.

3.2.1 East Midlands

The East Midlands has two primary production area centres: Welton and Gainsborough / Beckingham. The Welton area production wells are beam pump type. The Welton area fields comprise

- Welton A/B/C;
- Nettleham;
- Scampton (N&S);
- · Stainton; and
- Cold Hanworth

The Welton Gathering Centre ("WGC") is the hub reception and process facility. The produced oil, gas and water are separated at the WGC. Welton A/B/C and Nettleham flow to WGC via pipelines. All other fields have oil / water storage and tanker pick-up.

At WGC, product oil is exported to Conoco Immingham via road tanker, gas is used for power generation and produced water is pumped for reinjection at Welton A. WGC is manned 24 hours/day. All other Welton area sites are normally unmanned, but roving operators visit all sites daily during daytime hours.

The WGC has been designed for much higher throughputs than current use (6,000 bopd versus current 950 bopd) and previously included many more process unit operations including gas sweetening / amine units, fuel gas compression, GT power generation, etc. The WGC site has a large plot area. There are many site process unit operations that are now not in service or isolated, though not disinvested, including a former rail export siding.

The Gainsborough / Beckingham facility manages its own production as well as the production from seven other oilfields:

- Corringham,
- Glentworth,
- East Glentworth,
- · Rempstone,
- Long Clawson,
- South Leverton
- Bothamsall

Gainsborough / Beckingham wells flow to the Gainsborough-5 gathering / processing hub via pipelines. All other fields have oil / water storage and tanker pick-up. The Gainsborough-5 processing facility separates oil, gas and water. Oil is exported to Conoco Immingham via road tanker, gas is piped to Gainsborough-1 for power generation and produced water is pumped for reinjection. All Gainsborough / Beckingham area oil production wells are beam pump type.

Gainsborough-5 is manned 24 hours per day, Gainsborough-1 is manned during daytime hours and has 24 hour security and Long Clawson A is manned during daytime. All other Gainsborough area sites are normally unmanned, but roving operators visit all sites daily during daytime hours.

3.2.2 Weald Basin

The Southern Sites cover a broad area. Stockbridge, Palmers Wood, Bletchingly, Storrington and Horndean are manned sites with daytime operators. The two sites at Palmers Wood are covered by one man as are the three sites at Horndean. The main Stockbridge site, Larkwhistle Arm is manned during the day and operators from this site also service the Hill Farm, Folly Farm, Goodworth and Avington sites. The Holybourne terminal is manned.

The Albury gas field is presently suspended following drilling of a new well for potential gas storage use. It is planned to reinstall equipment for gas production and power generation for export.

Oil is exported by tanker from all sites except the Palmers Wood Coney Hill site which exports to the Palmers Wood Rooks Nest site by pipeline. There are plans to abandon this pipeline. There is also a pipeline into the Holybourne terminal from Humbly Grove. Produced water is either reinjected on site or trucked to another site for reinjection. Power is imported or generated by an on-site diesel generator.

Oil is either exported by road tanker to the BP operated Hamble terminal on the Solent or by road tanker to the third party operated Holybourne storage facility for onward transport by rail (5,000 stb loads) to the Esso Fawley refinery, which is generally once per week. Generally oil from Stockbridge is exported to Hamble and oil from the other field is exported to Holybourne / Fawley. However, there is flexibility of operation and any production can be exported via either route.

The production department has three workover rigs, four hot water flush rigs, one hot oil flush rig, and one flushby unit for pulling beam pump well rods.

3.2.3 Capex

Since the acquisition of the assets, no new developments have been sanctioned and Capex spend is generally being made to try to maintain the existing production profile as high as reasonably possible. This includes items such as well stimulation, well sidetracks and upgrading or replacement of existing facilities to improve reliability and to reduce Opex.

Site visits have shown that, in general terms, the equipment is being maintained in reasonable condition. However, equipment at some fields is quite dated and may lack the control and safety systems that would currently be installed. Although the age and specification of the equipment is mitigated to a certain extent by the generally low operating pressures, there is likely to be some continued requirement for Capex for replacement and upgrading. Some progressive upgrades have already been undertaken at the Welton satellite sites for tankage, bunding and remote monitoring systems. Similar upgrades are taking place at the older southern sites.

The Bletchingly facilities are still set up as a temporary well test system. It is planned to convert this site to a permanent production facility which will require concrete bunds for the existing process facilities and oil storage.

No significant levels of capex going forwards have been included in this valuation.

3.2.4 Opex and SG&A

Site visits indicated that operations are managed at relatively low levels of operating expenditure (Opex). The very experienced staff allow the facilities to be operated with low levels of manning and support. Since the acquisition, IGas have increased operational efficiency – e.g. working an extra rig – and this has resulted in increased production, but also increased Opex, compared to pre-acquisition estimates.

For oil export, the transportation costs are all apportioned back to each field. The Holybourne terminal operates as a cost centre and charges an internal tariff for oil unloading, storage and onward shipment.

Opex is based on 2012 figures, but the amount is expected to reduce in the next years, due to cost savings and fields being shut in. General and Administrative costs (SG&A) have been reviewed and Senergy has concluded that a large part of these costs has been removed from the business since the transaction completed. Senergy has reviewed the historical and projected SG&A costs and has concluded that these are reasonable.

3.2.5 Abandonment Costs

Since the completion of the acquisition, abandonment costs have been reviewed by IGas and specific provisions have been made for each field, based on a bottom-up analysis. In the economic model IGas has assumed that abandonment will happen one year after the economic cut-off date of the field has been reached. Senergy believes that this is a robust assumption and that in reality a more lenient abandonment schedule can be achieved.

3.3 Economics Methodology

The Reserves have been evaluated in terms of un-risked pre-tax Net Present Values (NPVs). The economic evaluation has been performed using an economic model developed by Senergy, based on a financial / economic model provided by IGas. The model uses standard discounted cashflow techniques to derive pre-tax NPVs for each field. Future cashflows have been calculated by deducting cash outflows from cash inflows. Cash outflows include capital costs, operating costs, SG&A costs, transportation and abandonment costs, but exclude financing. Cash inflows include revenues from the sale of hydrocarbons and electrical power. Revenues are based on the field oil production and on produced gas, used for power generation for third party consumption.

Economic cut-offs have been determined as occurring once operating cashflows become negative. NPVs are calculated for an effective date of 1st July 2012, and use mid period discounting. A discount rate of 10% has been applied.

Prices and costs have been adjusted for inflation as appropriate.

3.4 Product prices

The oil produced is currently sold into the UK market either to BP, Exxon or Conoco through long term contracts at a discount to the prevailing Brent price. The impact of any commodity hedge contracts entered into by IGas have not been included.

A flat US Dollar to GB Pound exchange rate factor of 1.58 \$/£ has been used to convert oil revenues from US dollars to Sterling.

Electrical power has been assumed to be sold to third parties at the following prices per MWh as advised by IGas.

Year	Price
2012-13	£36.23
2013-14	£37.49
2014-15	£38.81
2015-16	£40.16
2016-17	£41.57
2017-18	£43.02
2018-19	£44.53
2019-20	£46.09
2020-21	£47.70
2021-22	£49.37
2022-23	£51.10

3.5 Fiscal regime

NPVs have been calculated pre-tax and therefore no assumptions on the fiscal regime have been made.

3.6 Equity Interests

IGas equity interest is assumed to be of 100% in all fields except Avington (50%) and Horndean (89.125%);

3.7 Economic Results

Using the production profiles as determined in Section 2, pre-tax NPVs have been calculated for the 1P and 2P cases, using the following specific assumptions in addition to those in the sections above:

- Brent Oil Price of \$112.89/bbl based on average month beginning prices for the twelve months ending June 2012.
- Inflation rate of zero percent applied to costs and prices.

	IGas Net Attributable pre-tax NPV10 (£MM)		
	Proved (1P)	Proved plus Probable (2P)	
\$112.89/bbl 0% inflation	130.2	197.2	

Additional income from the handling of third party products was not included but was estimated in June 2012 to have an NPV of approximately £2.8MM over the remaining life of the related fields.

4 References

- i. Competent Persons Report, November 2011 by Senergy on behalf of IGas Energy plc.
- ii. Competent Persons Report Update, June 2012 by Senergy on behalf of IGas Energy plc.
- iii. "Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserve Information", published by the Society of Petroleum Engineers (SPE) in June 2001, SPE website (www.spe.org).
- iv. "Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserve Information Approved by SPE Boards June 2001 Revision as of February 19, 2007", published by the Society of Petroleum Engineers (SPE); SPE website (www.spe.org).
- v. "Petroleum Resources Management System", Sponsored by SPE, AAPG, WPC, SPEE, published 2007; SPE website (<u>www.spe.org</u>).
- vi. "Petroleum Reserves Definitions" approved by SPE and WPC March 1997; SPE website (<u>www.spe.org</u>).
- vii. "Note for Mining and Oil & Gas Companies", London Stock Exchange, AIM Guidelines, June 2009.

5 Nomenclature

Variable	Meaning	Units
2D	Two dimensional	
3D	Three dimensional	
Admission	Process of admission of an entity to a Stock Market.	
API	American Petroleum Institute	
AVO	Amplitude versus offset or amplitude variation with offset is often used as a direct hydrocarbon indicator.	
Best Estimate	An estimate representing the best technical assessment of projected volumes. Often associated with a central, P50 or mean value.	
BHFP	Bottom hole flowing pressure	psi
BHSIP	Bottom hole shut in pressure	psi
bbls/d	Barrels per day	
BCU	Base Cretaceous Unconformity	
bopd	Barrels of oil per day	
BPU	Base Permian Unconformity	
Bscf	Billions of standard cubic feet	
Bwpd	Barrels of water per day	
CGR	Condensate gas ratio	
Ср	Centipoise	
CNG	Compressed Natural Gas	
CO ₂	Carbon dioxide	
COS	Exploration or geological chance of success. The probability, typically expressed as a percentage that a given outcome will occur.	
CPI	Computer-processed interpretation	
D	Day	
DCA	Decline Curve Analysis	
DST	Drill stem test	
EMV	Expected Monetary Value	
EWT	Extended well test	
º F / º C	Degrees Fahrenheit / Centigrade	
FDP	Field Development Programme	
FWHP	Flowing wellhead pressure	psi
FWL	Free water level	
FWP	Flowing Wellhead Pressure	
GDT	Gas Down To	ft or m
GIIP	Gas Initially In Place	
GR	Gamma ray	api
GOR	Gas Oil Ratio	
GRV	Gross Rock Volume	
GWC	Gas-water contact	

Н	Thickness	ft or m
HIIP	Hydrocarbons Initially in Place	
IOR	Improved oil recovery	
К	Permeability	mD
k _a	Air permeability	mD
Kh	Permeability-thickness	mDft
k MT	Thousands of metric tonnes	
Kw	Water Permeability	mD
Lead	A feature identified on seismic data that has the potential to become a prospect. Usually a Lead is associated with poorer quality or limited 2D seismic data.	
LKG	Lowest Known Gas	ft or m
LPG	Liquified Petroleum Gas	Tonnes
Ма	Millenia	
Mbal	Material Balance. A means of assessing HIIP.	
Md	Measured depth	ft or m
mD	Millidarcies	
Mdrkb	Measured Depth Rotary Kelly Bushing	ft or m
Mdbrt	Measured depth Below Rotary Table	ft or m
Mean	The arithmetic average of a set of values	
MJ/Sm ³	Mega Joules per standard metre cubed.	
MM	Million	
MMbo	Million barrels oil	
MMboe	Millions of barrels of oil equivalent	
MMscf/d	Million standard cubic feet per day	
MMstb	Millions of barrels of stock tank oil	
N-D	Neuron-Density	
N/G	Net to Gross	
NPV	Net present value	
NUI	Normally unmanned installation	
OBM	Oil based mud	
ODT	Oil down to	
OPII	Orient Petroleum International Inc	
OWC	Oil water contact	
PDO	Plan of Development and Operation	
PEF	Photoelectric effect	
P _{res}	Reservoir pressure	psi
Ppg	pounds per gallon	
Ppm	parts per million	
Producing	Related to development projects (eg wells and platforms): Active facilities, currently involved in the extraction (production) of hydrocarbons from discovered reservoirs.	
Prospective Resources	Prospective Resources are those quantities of petroleum estimated, as of a given date, to be potentially recoverable from undiscovered accumulations by	

	application of future development projects. Prospective Resources have both an associated chance of discovery and a chance of development. Prospective Resources are further subdivided in accordance with the level of certainty associated with recoverable estimates assuming their discovery and development and may be subclassified based on project maturity.	
Proved	Proved Reserves are those quantities of petroleum, which, by analysis of geoscience and engineering data, can be estimated with reasonable certainty to be commercially recoverable, from a given date forward, from known reservoirs and under defined economic conditions, operating methods, and government regulations. If deterministic methods are used, the term reasonable certainty is intended to express a high degree of confidence that the quantities will be recovered. If probabilistic methods are used, there should be at least a 90% probability that the quantities actually recovered will equal or exceed the estimate.	
Proved plus Probable	Probable Reserves are those additional Reserves which analysis of geoscience and engineering data indicate are less likely to be recovered than Proved Reserves but more certain to be recovered than Possible Reserves. It is equally likely that actual remaining quantities recovered will be greater than or less than the sum of the estimated Proved plus Probable Reserves (2P). In this context, when probabilistic methods are used, there should be at least a 50% probability that the actual quantities recovered will equal or exceed the 2P estimate.	
Proved plus Probable plus Possible	Possible Reserves are those additional reserves which analysis of geo-science and engineering data suggest are less likely to be recoverable than Probable Reserves. The total quantities ultimately recovered from the project have a low probability to exceed the sum of Proved plus Probable plus Possible (3P) Reserves, which is equivalent to the high estimate scenario. In this context, when probabilistic methods are used, there should be at least a 10% probability that the actual quantities recovered will equal or exceed the 3P estimate.	
PVT	Pressure Volume Temperature: Measurement of the variation in petroleum properties as the stated parameters is varied.	
P/Z	Reservoir pressure (P) divided by the compressibility factor (Z), which plotted against cumulative gas volume produced provides a simplified material balance analysis for gas fields.	
Reserves	Reserves are those quantities of petroleum anticipated to be commercially recoverable by application of development projects to known accumulations from a given date forward under defined conditions. Reserves must further satisfy four criteria: they must be discovered, recoverable, commercial, and remaining (as of the evaluation date) based on the development project(s) applied. Reserves are further categorized in accordance with the level of certainty associated with the estimates and may be sub-classified based on project maturity and/or characterized by development and production	

	status.	
RFT	Repeat formation tester	
Rw	Water resistivity	
scf	Standard cubic foot	
So	Oil saturation	
SP	Spontaneous potential	
SSV	Surface safety valve	
SSSV	Surface and subsurface safety valve	
stb/d	Stock tank barrels per day	
STOIIP	Stock tank oil initially in place	
Sw	Water saturation	ratio
TD	Total depth	ft or m
TWT	Two way time	
tvdbrt	True vertical depth below rotary table	ft or m
tvdss	True vertical depth sub sea	ft or m
VoK	Average velocity function for depth conversion of time based seismic data, where Vo is the initial velocity and k provides information on the increase or decrease in velocity with depth. V0+k therefore provides a method of depth conversion using a linear velocity field, increasing or decreasing with depth for each geological zone.	
WGR	Water gas ratio	
WHP	Wellhead pressure	psi
WUT	Water up to	

Appendix 1 Certificate of Qualification of Oil and Gas Reserves Auditor

I, J. ALLAN SPENCER, HEREBY CERTIFY:

- 1. THAT I am a Professional Petroleum Engineer in the United Kingdom, resident in Guildford, England.
- 2. THAT I graduated from the University of Strathclyde, Glasgow, Scotland with a Bachelor of Science degree with Honours in Electrical Engineering in 1970.
- 3. THAT I have been employed in the Petroleum industry since graduating. During that time I have been directly involved in petrophysical evaluation, well testing and analysis, production operations, field development, petroleum and reservoir engineering, economic evaluation, reserves estimation, reporting and auditing. I served as BP Corporate Reserves Coordinator from 1990 to 1999. I served as a Society of Petroleum Engineers (SPE) Oil and Gas Reserves Committee Member 1996 2000, and Chairman 1998 1999.
- 4. THAT I am a member of the Energy Institute, London, England and of the Society of Petroleum Engineers, Richardson, Texas, U.S.A.
- 5. THAT I am currently working for Senergy (GB) Limited, a subsurface consultancy with experience of Reserves Estimation and Reserves Auditing. Senergy (GB) Limited prepared a CPR report of IGas Energy plc's onshore UK oil and gas producing assets, effective 1st January 2012.
- 6. THAT the parameters and assumptions employed by Senergy (GB) Limited were examined by me and adopted as representative and appropriate in establishing the IGas Energy plc onshore oil and gas producing Reserves at 1st July 2012.
- 7. THAT the aforementioned report was not based on a personal field examination of IGas Energy plc's fields; however as such an examination was not deemed necessary in view of the information available from IGas Energy plc and public sources.
- 8. THAT I have not received, nor do I expect to receive, any direct or indirect interest in the holdings evaluated, or in the securities of the company.
- 9. THAT I have not examined the chain of title for the property evaluated but have relied on descriptions furnished by the client.

Allan Suncer

J Allan Spencer, B.Sc. (Hons), E.I., SPE.

21st November 2012

December 2012

IGas Licence Interests

Licence	Fields	IGas Interest	Operator	Partners	Area (km2)	Expiry
			EAST MIDLA	ANDS		
PL179	East Glentworth	100%	Yes	N/A	3.56	18/11/2026
PL179-2	Welton	100%	Yes	N/A		18/11/2026
PL179-2	Scampton & Scampton North	100%	Yes	N/A		18/11/2026
PL179-2	Stainton	100%	Yes	N/A		18/11/2026
PL179-2	Nettleham	100%	Yes	N/A		18/11/2026
PEDL006	Cold Hanworth	100%	Yes	N/A		04/04/2027
ML004-1/2	Gainsborough/Beckingham	100%	Yes	N/A	36.58	31/03/2015
ML004-3	Corringham/Glentworth	100%	Yes	N/A	34.59	31/03/2015
PL220-1	Long Clawson	100%	Yes	N/A	4	08/08/2016
PL220-2	Rempstone	100%	Yes	N/A	9	08/08/2016
ML006	Bothamsall	100%	Yes	N/A	11.05	31/03/2015
ML003	Egmanton	100%	Yes	N/A	25.76	30/12/2033
ML007	South Leverton	100%	Yes	N/A	12.24	31/03/2015
PEDL 235	Godley Bridge	100%	Yes	N/A		01/07/2039
PL 178	West Beckingham	100%	Yes	N/A		17/11/2014
PL 199	Near Nettleham	100%	Yes	N/A		01/11/2027
			WEAL			
DL004	Albury	100.00%	Yes	N/A		16/11/2013
PL205	Storrington	100.00%	Yes	N/A		14/02/2016
PL182	Palmers Wood	100.00%	Yes	N/A		17/11/2014
				Northern Petroleum (10%), Noble		
PL211	Horndean	89.13%	Yes	Energy (0.875%)		04/04/2016
PL233	Stockbridge	100.00%	Yes	N/A	58.49	27/10/2017
PL249	Stockbridge	100.00%	Yes	N/A	15.68	01/12/2017
DL002	Stockbridge	100.00%	Yes	N/A	10.59	31/12/2019
PEDL021	Goodworth	100.00%	Yes	N/A		04/04/2027
				Egdon (20%), YCI Resources (16.67%),		
				Sterling Resources (8.33%), Northern		
PEDL070	Avington	50.00%	Yes	Petroleum (5%)		08/09/2031
AL 009	Dunholme	100%	Yes	N/A		07/04/2025
ML 018	Bletchingly	100%	Yes	N/A		11/01/2017
ML 021	Bletchingly	100%	Yes	N/A		01/04/2017

Source: IGas Energy plc

Gross and Net Reserves & Resources

Oil Gross Reserves (MMbbl)	1P	2P	3P	Contingent Resources
Bothamsall	0.178	0.249	0.313	N/A
Cold Hanworth	0.116	0.166	0.374	N/A
Corringham	0.196	0.280	0.386	0.242
East Glentworth	0.047	0.074	0.187	0.376
Egmanton	0.001	0.002	0.029	N/A
Gainsborough/Beckingham	0.348	0.612	0.863	0.200
Glentworth	0.545	0.673	0.857	0.288
Long Clawson	0.314	0.401	0.536	0.238
Nettleham	0.002	0.002	0.043	N/A
Rempstone	0.060	0.066	0.090	N/A
Scampton	0.021	0.048	0.069	N/A
Scampton North	0.524	0.678	0.903	N/A
Stainton	0.003	0.025	0.059	N/A
South Leverton	0.001	0.002	0.015	N/A
Welton	1.794	2.697	3.872	0.200
Avington	0.025	0.056	0.113	5.800
Bletchingley	0.285	0.455	0.665	0.600
Goodworth	0.121	0.165	0.181	N/A
Horndean	0.326	0.557	0.715	N/A
Palmers Wood	0.039	0.101	0.183	N/A
Storrington	0.011	0.026	0.124	N/A
Stockbridge	2.247	2.783	3.048	N/A
TOTAL OIL (MMbbl)	7.20	10.12	13.63	7.94
Net Total Oil Reserves (MMbbl)	7.16	10.03	13.49	5.04

Gas Gross Reserves (Bscf)	1P	2P	3P	Contingent Resources
Gainsborough/Beckingham	3.62	5.92	7.12	N/A
Albury	0.70	2.20	2.70	N/A
TOTAL GAS (Bscf)	4.32	8.12	9.82	
Net Total Gas Reserves (MMboe)	0.74	1.40	1.69	
Gross Total Oil and Gas Reserves (MMboe)	7.95	11.52	15.32	7.94
Net Total Oil and Gas Reserves (MMboe)	7.90	11.43	15.18	5.04

Bothamsall

	1P	1P	1P	2P	2P	2P	3P	3P	3P
2112242	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	6.172	6.172	33.8	6.267	6.267	34.3	6.803	6.803	37.3
1H2013	5.909	12.081	32.4	6.060	12.327	33.2	6.599	13.402	36.1
2H2013	5.847	17.928	32.0	6.055	18.382	33.2	6.616	20.018	36.2
1H2014	5.599	23.527	30.7	5.854	24.236	32.1	6.420	26.438	35.2
2H2014	5.540	29.067	30.3	5.849	30.085	32.0	6.438	32.876	35.3
1H2015	5.305	34.372	29.0	5.655	35.740	31.0	6.248	39.124	34.2
2H2015	5.249	39.621	28.7	5.651	41.391	30.9	6.266	45.390	34.3
1H2016	5.054	44.675	27.7	5.493	46.884	30.1	6.116	51.506	33.5
2H2016	4.973	49.648	27.2	5.458	52.342	29.9	6.101	57.607	33.4
1H2017	4.761	54.409	26.1	5.277	57.619	28.9	5.923	63.530	32.4
2H2017	4.712	59.121	25.8	5.273	62.892	28.9	5.943	69.473	32.5
1H2018	4.511	63.632	24.7	5.098	67.990	27.9	5.770	75.243	31.6
2H2018	4.464	68.096	24.4	5.094	73.084	27.9	5.791	81.034	31.7
1H2019	4.274	72.370	23.4	4.925	78.009	27.0	5.623	86.657	30.8
2H2019	4.229	76.599	23.2	4.921	82.930	26.9	5.644	92.301	30.9
1H2020	4.072	80.671	22.3	4.784	87.714	26.2	5.512	97.813	30.2
2H2020	4.007	84.678	21.9	4.753	92.467	26.0	5.503	103.316	30.1
1H2021	3.836	88.514	21.0	4.596	97.063	25.2	5.346	108.662	29.3
2H2021	3.796	92.310	20.8	4.592	101.655	25.1	5.367	114.029	29.4
1H2022	3.635	95.945	19.9	4.440	106.095	24.3	5.215	119.244	28.6
2H2022	3.597	99.542	19.7	4.436	110.531	24.3	5.236	124.480	28.7
1H2023	3.444	102.986	18.9	4.289	114.820	23.5	5.088	129.568	27.9
2H2023	3.408	106.394	18.7	4.285	119.105	23.5	5.110	134.678	28.0
1H2024	3.281	109.675	18.0	4.166	123.271	22.8	4.994	139.672	27.3
2H2024	3.228	112.903	17.7	4.140	127.411	22.7	4.988	144.660	27.3
1H2025	3.091	115.994	16.9	4.002	131.413	21.9	4.849	149.509	26.6
2H2025	3.059	119.053	16.8	3.999	135.412	21.9	4.871	154.380	26.7
1H2026	2.929	121.982	16.0	3.866	139.278	21.2	4.736	159.116	25.9
2H2026	2.898	124.880	15.9	3.863	143.141	21.2	4.758	163.874	26.1
1H2027	2.775	127.655	15.2	3.735	146.876	20.5	4.626	168.500	25.3
2H2027	2.746	130.401	15.0	3.732	150.608	20.4	4.649	173.149	25.5
1H2028	2.643	133.044	14.5	3.628	154.236	19.9	4.545	177.694	24.9
2H2028	2.601	135.645	14.2	3.605	157.841	19.7	4.543	182.237	24.9

				ı	1				
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	2.491	138.136	13.6	3.486	161.327	19.1	4.418	186.655	24.2
2H2029	2.465	140.601	13.5	3.483	164.810	19.1	4.441	191.096	24.3
1H2030	2.360	142.961	12.9	3.367	168.177	18.4	4.320	195.416	23.7
2H2030	2.335	145.296	12.8	3.364	171.541	18.4	4.342	199.758	23.8
1H2031	2.236	147.532	12.2	3.253	174.794	17.8	4.224	203.982	23.1
2H2031	2.212	149.744	12.1	3.250	178.044	17.8	4.247	208.229	23.3
1H2032	2.130	151.874	11.7	3.160	181.204	17.3	4.155	212.384	22.8
2H2032	2.096	153.970	11.5	3.140	184.344	17.2	4.154	216.538	22.7
1H2033	2.007	155.977	11.0	3.035	187.379	16.6	4.042	220.580	22.1
2H2033	1.986	157.963	10.9	3.033	190.412	16.6	4.065	224.645	22.3
1H2034	1.901	159.864	10.4	2.932	193.344	16.1	3.956	228.601	21.7
2H2034	1.881	161.745	10.3	2.930	196.274	16.0	3.979	232.580	21.8
1H2035	1.802	163.547	9.9	2.833	199.107	15.5	3.872	236.452	21.2
2H2035	1.783	165.330	9.8	2.831	201.938	15.5	3.895	240.347	21.3
1H2036	1.716	167.046	9.4	2.752	204.690	15.1	3.812	244.159	20.9
2H2036	1.689	168.735	9.2	2.734	207.424	15.0	3.814	247.973	20.9
1H2037	1.617	170.352	8.9	2.644	210.068	14.5	3.713	251.686	20.3
2H2037	1.600	171.952	8.8	2.641	212.709	14.5	3.735	255.421	20.5
1H2038	1.532	173.484	8.4	2.554	215.263	14.0	3.637	259.058	19.9
2H2038	1.516	175.000	8.3	2.552	217.815	14.0	3.659	262.717	20.0
1H2039	1.452	176.452	8.0	2.467	220.282	13.5	3.563	266.280	19.5
2H2039	1.436	177.888	7.9	2.465	222.747	13.5	3.585	269.865	19.6
1H2040				2.396	225.143	13.1	3.511	273.376	19.2
2H2040				2.381	227.524	13.0	3.513	276.889	19.2
1H2041				2.302	229.826	12.6	3.422	280.311	18.7
2H2O41				2.300	232.126	12.6	3.444	283.755	18.9
1H2042				2.224	234.350	12.2	3.354	287.109	18.4
2H2O42				2.222	236.572	12.2	3.376	290.485	18.5
1H2043				2.149	238.721	11.8	3.289	293.774	18.0
2H2043				2.147	240.868	11.8	3.311	297.085	18.1
1H2044				2.087	242.955	11.4	3.243	300.328	17.8
2H2044				2.074	245.029	11.4	3.247	303.575	17.8
1H2045				2.005	247.034	11.0	3.164	306.739	17.3
2H2045				2.003	249.037	11.0	3.185	309.924	17.4
1H2046			· ·				3.104	313.028	17.0

Cold Hanworth

		1							
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	13.504	13.504	73.9	16.036	16.036	87.8	17.622	17.622	96.5
1H2013	12.036	25.540	65.9	14.469	30.505	79.2	16.249	33.871	89.0
2H2013	11.087	36.627	60.7	13.492	43.997	73.9	15.516	49.387	85.0
1H2014	9.882	46.509	54.1	12.173	56.170	66.7	14.363	63.750	78.6
2H2014	9.103	55.612	49.8	11.351	67.521	62.2	13.765	77.515	75.4
1H2015	8.114	63.726	44.4	10.242	77.763	56.1	12.787	90.302	70.0
2H2015	7.474	71.200	40.9	9.550	87.313	52.3	12.295	102.597	67.3
1H2016	6.696	77.896	36.7	8.663	95.976	47.4	11.519	114.116	63.1
2H2016	6.133	84.029	33.6	8.031	104.007	44.0	11.046	125.162	60.5
1H2017	5.466	89.495	29.9	7.247	111.254	39.7	10.321	135.483	56.5
2H2017	5.035	94.530	27.6	6.757	118.011	37.0	9.980	145.463	54.6
1H2018	4.488	99.018	24.6	6.097	124.108	33.4	9.349	154.812	51.2
2H2018	4.134	103.152	22.6	5.685	129.793	31.1	9.061	163.873	49.6
1H2019	3.685	106.837	20.2	5.130	134.923	28.1	8.508	172.381	46.6
2H2019	3.394	110.231	18.6	4.783	139.706	26.2	8.264	180.645	45.3
1H2020	3.041	113.272	16.7	4.339	144.045	23.8	7.817	188.462	42.8
2H2020	2.785	116.057	15.2	4.023	148.068	22.0	7.566	196.028	41.4
1H2021				3.629	151.697	19.9	7.132	203.160	39.1
2H2021				3.384	155.081	18.5	6.954	210.114	38.1
1H2022				3.054	158.135	16.7	6.567	216.681	36.0
2H2022				2.847	160.982	15.6	6.413	223.094	35.1
1H2023				2.569	163.551	14.1	6.066	229.160	33.2
2H2023				2.396	165.947	13.1	5.934	235.094	32.5
1H2024							5.651	240.745	30.9
2H2024							5.504	246.249	30.1
1H2025							5.221	251.470	28.6
2H2025							5.121	256.591	28.0
1H2026							4.864	261.455	26.6
2H2026							4.777	266.232	26.2
1H2027							4.542	270.774	24.9
2H2027							4.466	275.240	24.5
1H2028							4.274	279.514	23.4
2H2028							4.184	283.698	22.9

		1							
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029							3.987	287.685	21.8
2H2029							3.928	291.613	21.5
1H2030							3.747	295.360	20.5
2H2030							3.695	299.055	20.2
1H2031							3.528	302.583	19.3
2H2031							3.482	306.065	19.1
1H2032							3.346	309.411	18.3
2H2032							3.287	312.698	18.0
1H2033							3.144	315.842	17.2
2H2033							3.108	318.950	17.0
1H2034							2.975	321.925	16.3
2H2034							2.943	324.868	16.1
1H2035							2.819	327.687	15.4
2H2035							2.791	330.478	15.3
1H2036							2.690	333.168	14.7
2H2036							2.651	335.819	14.5
1H2037							2.542	338.361	13.9
2H2037							2.520	340.881	13.8
1H2038							2.419	343.300	13.2
2H2038							2.400	345.700	13.1
1H2039							2.304	348.004	12.6
2H2039							2.287	350.291	12.5
1H2040							2.210	352.501	12.1
2H2040							2.182	354.683	11.9
1H2O41							2.098	356.781	11.5
2H2O41							2.085	358.866	11.4
1H2O42							2.005	360.871	11.0
2H2042							1.994	362.865	10.9
1H2043							1.919	364.784	10.5
2H2043							1.908	366.692	10.4
1H2044							1.847	368.539	10.1
2H2044							1.828	370.367	10.0
1H2045							1.761	372.128	9.6
2H2045							1.753	373.881	9.6
1H2046									

Corringham

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	9.008	9.008	49.3	10.844	10.844	59.4	11.293	11.293	61.8
1H2013	8.497	17.505	46.5	10.295	21.139	56.4	10.791	22.084	59.1
2H2013	8.283	25.788	45.4	10.100	31.239	55.3	10.659	32.743	58.4
1H2014	7.813	33.601	42.8	9.588	40.827	52.5	10.193	42.936	55.8
2H2014	7.616	41.217	41.7	9.407	50.234	51.5	10.077	53.013	55.2
1H2015	7.184	48.401	39.3	8.930	59.164	48.9	9.644	62.657	52.8
2H2015	7.003	55.404	38.3	8.761	67.925	48.0	9.542	72.199	52.2
1H2016	6.641	62.045	36.4	8.362	76.287	45.8	9.188	81.387	50.3
2H2016	6.437	68.482	35.2	8.158	84.445	44.7	9.046	90.433	49.5
1H2017	6.072	74.554	33.2	7.744	92.189	42.4	8.670	99.103	47.5
2H2017	5.919	80.473	32.4	7.598	99.787	41.6	8.590	107.693	47.0
1H2018	5.583	86.056	30.6	7.213	107.000	39.5	8.238	115.931	45.1
2H2018	5.442	91.498	29.8	7.076	114.076	38.7	8.167	124.098	44.7
1H2019	5.134	96.632	28.1	6.717	120.793	36.8	7.837	131.935	42.9
2H2019	5.004	101.636	27.4	6.590	127.383	36.1	7.774	139.709	42.6
1H2020	4.746	106.382	26.0	6.290	133.673	34.4	7.506	147.215	41.1
2H2020	4.600	110.982	25.2	6.137	139.810	33.6	7.409	154.624	40.6
1H2021	4.339	115.321	23.8	5.826	145.636	31.9	7.118	161.742	39.0
2H2021	4.230	119.551	23.2	5.715	151.351	31.3	7.069	168.811	38.7
1H2022	3.990	123.541	21.8	5.426	156.777	29.7	6.795	175.606	37.2
2H2022	3.889	127.430	21.3	5.323	162.100	29.1	6.752	182.358	37.0
1H2023	3.669	131.099	20.1	5.053	167.153	27.7	6.494	188.852	35.6
2H2023	3.576	134.675	19.6	4.958	172.111	27.1	6.456	195.308	35.4
1H2024	3.392	138.067	18.6	4.732	176.843	25.9	6.246	201.554	34.2
2H2024	3.287	141.354	18.0	4.616	181.459	25.3	6.179	207.733	33.8
1H2025	3.101	144.455	17.0	4.382	185.841	24.0	5.948	213.681	32.6
2H2025	3.023	147.478	16.6	4.299	190.140	23.5	5.919	219.600	32.4
1H2026	2.851	150.329	15.6	4.081	194.221	22.3	5.701	225.301	31.2
2H2026	2.779	153.108	15.2	4.004	198.225	21.9	5.676	230.977	31.1
1H2027	2.622	155.730	14.4	3.801	202.026	20.8	5.469	236.446	29.9
2H2027	2.556	158.286	14.0	3.729	205.755	20.4	5.447	241.893	29.8
1H2028	2.424	160.710	13.3	3.560	209.315	19.5	5.279	247.172	28.9
2H2028	2.349	163.059	12.9	3.473	212.788	19.0	5.231	252.403	28.6

		1		T	I I				
	1P	1P	1P	2P	2 P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	2.216	165.275	12.1	3.297	216.085	18.1	5.045	257.448	27.6
2H2029	2.160	167.435	11.8	3.234	219.319	17.7	5.029	262.477	27.5
1H2030	2.038	169.473	11.2	3.070	222.389	16.8	4.851	267.328	26.6
2H2030	1.986	171.459	10.9	3.012	225.401	16.5	4.838	272.166	26.5
1H2031	1.874	173.333	10.3	2.860	228.261	15.7	4.669	276.835	25.6
2H2031	1.826	175.159	10.0	2.805	231.066	15.4	4.657	281.492	25.5
1H2032	1.732	176.891	9.5	2.678	233.744	14.7	4.521	286.013	24.8
2H2032	1.679	178.570	9.2	2.612	236.356	14.3	4.486	290.499	24.6
1H2033	1.584	180.154	8.7	2.480	238.836	13.6	4.333	294.832	23.7
2H2033	1.544	181.698	8.5	2.433	241.269	13.3	4.325	299.157	23.7
1H2034	1.456	183.154	8.0	2.310	243.579	12.6	4.178	303.335	22.9
2H2034	1.419	184.573	7.8	2.266	245.845	12.4	4.172	307.507	22.8
1H2035	1.339	185.912	7.3	2.151	247.996	11.8	4.032	311.539	22.1
2H2035	1.305	187.217	7.1	2.110	250.106	11.6	4.027	315.566	22.1
1H2036	1.238	188.455	6.8	2.014	252.120	11.0	3.915	319.481	21.4
2H2036	1.200	189.655	6.6	1.965	254.085	10.8	3.890	323.371	21.3
1H2037	1.132	190.787	6.2	1.865	255.950	10.2	3.761	327.132	20.6
2H2037	1.103	191.890	6.0	1.830	257.780	10.0	3.759	330.891	20.6
1H2038	1.041	192.931	5.7	1.737	259.517	9.5	3.636	334.527	19.9
2H2038	1.014	193.945	5.6	1.705	261.222	9.3	3.635	338.162	19.9
1H2039	0.957	194.902	5.2	1.618	262.840	8.9	3.517	341.679	19.3
2H2039	0.933	195.835	5.1	1.587	264.427	8.7	3.517	345.196	19.3
1H2040				1.515	265.942	8.3	3.423	348.619	18.7
2H2040				1.478	267.420	8.1	3.405	352.024	18.6
1H2041				1.403	268.823	7.7	3.296	355.320	18.0
2H2041				1.377	270.200	7.5	3.298	358.618	18.1
1H2042				1.307	271.507	7.2	3.193	361.811	17.5
2H2042				1.282	272.789	7.0	3.196	365.007	17.5
1H2043				1.217	274.006	6.7	3.095	368.102	16.9
2H2043				1.194	275.200	6.5	3.098	371.200	17.0
1H2044				1.140	276.340	6.2	3.018	374.218	16.5
2H2044				1.112	277.452	6.1	3.005	377.223	16.5
1H2045				1.056	278.508	5.8	2.912	380.135	15.9
2H2045				1.036	279.544	5.7	2.916	383.051	16.0
1H2046							2.826	385.877	15.5

East Glentworth

							I		
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	5.753	5.753	31.5	6.364	6.364	34.8	6.491	6.491	35.5
1H2013	5.080	10.833	27.8	5.778	12.142	31.6	6.136	12.627	33.6
2H2013	4.636	15.469	25.4	5.422	17.564	29.7	6.000	18.627	32.9
1H2014	4.094	19.563	22.4	4.923	22.487	27.0	5.680	24.307	31.1
2H2014	3.736	23.299	20.5	4.620	27.107	25.3	5.562	29.869	30.5
1H2015	3.299	26.598	18.1	4.195	31.302	23.0	5.273	35.142	28.9
2H2015	3.011	29.609	16.5	3.936	35.238	21.6	5.170	40.312	28.3
1H2016	2.673	32.282	14.6	3.593	38.831	19.7	4.935	45.247	27.0
2H2016	2.425	34.707	13.3	3.352	42.183	18.4	4.818	50.065	26.4
1H2017	2.141	36.848	11.7	3.044	45.227	16.7	4.579	54.644	25.1
2H2017	1.954	38.802	10.7	2.856	48.083	15.6	4.501	59.145	24.6
1H2018	1.726	40.528	9.5	2.593	50.676	14.2	4.283	63.428	23.5
2H2018	1.575	42.103	8.6	2.433	53.109	13.3	4.214	67.642	23.1
1H2019	1.391	43.494	7.6	2.209	55.318	12.1	4.015	71.657	22.0
2H2019	1.269	44.763	6.9	2.073	57.391	11.4	3.954	75.611	21.7
1H2020	1.126	45.889	6.2	1.893	59.284	10.4	3.791	79.402	20.8
2H2020	1.022	46.911	5.6	1.766	61.050	9.7	3.717	83.119	20.4
1H2021				1.603	62.653	8.8	3.548	86.667	19.4
2H2021				1.504	64.157	8.2	3.501	90.168	19.2
1H2022				1.366	65.523	7.5	3.344	93.512	18.3
2H2022				1.282	66.805	7.0	3.303	96.815	18.1
1H2023				1.164	67.969	6.4	3.158	99.973	17.3
2H2023				1.092	69.061	6.0	3.122	103.095	17.1
1H2024				0.997	70.058	5.5	3.003	106.098	16.4
2H2024				0.930	70.988	5.1	2.954	109.052	16.2
1H2025				0.845	71.833	4.6	2.829	111.881	15.5
2H2025				0.792	72.625	4.3	2.801	114.682	15.3
1H2026				0.720	73.345	3.9	2.684	117.366	14.7
2H2026				0.675	74.020	3.7	2.659	120.025	14.6
1H2027							2.549	122.574	14.0
2H2027							2.527	125.101	13.8
1H2028							2.438	127.539	13.3
2H2028							2.405	129.944	13.2

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029							2.309	132.253	12.6
2H2029							2.291	134.544	12.5
1H2030							2.201	136.745	12.1
2H2030							2.186	138.931	12.0
1H2031							2.101	141.032	11.5
2H2031							2.087	143.119	11.4
1H2032							2.018	145.137	11.0
2H2032							1.995	147.132	10.9
1H2033							1.920	149.052	10.5
2H2033							1.909	150.961	10.5
1H2034							1.838	152.799	10.1
2H2034							1.829	154.628	10.0
1H2035							1.761	156.389	9.6
2H2035							1.753	158.142	9.6
1H2036							1.698	159.840	9.3
2H2036							1.682	161.522	9.2
1H2037							1.621	163.143	8.9
2H2037							1.615	164.758	8.8
1H2038							1.558	166.316	8.5
2H2038							1.552	167.868	8.5
1H2039							1.498	169.366	8.2
2H2039							1.493	170.859	8.2
1H2040							1.449	172.308	7.9
2H2040							1.437	173.745	7.9
1H2041							1.387	175.132	7.6
2H2041							1.384	176.516	7.6
1H2042							1.337	177.853	7.3
2H2042							1.334	179.187	7.3
1H2043							1.289	180.476	7.1
2H2043							1.287	181.763	7.0
1H2044							1.251	183.014	6.9
2H2044							1.242	184.256	6.8
1H2045							1.201	185.457	6.6
2H2045							1.200	186.657	6.6
1H2046									

senergy

Egmanton

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	0.534	0.534	2.9	0.712	0.712	3.9	1.943	1.943	10.6
1H2013	0.492	1.026	2.7	0.656	1.368	3.6	1.765	3.708	9.7
2H2013	0.469	1.495	2.6	0.625	1.993	3.4	1.660	5.368	9.1
1H2014							1.513	6.881	8.3
2H2014							1.427	8.308	7.8
1H2015							1.305	9.613	7.1
2H2015							1.236	10.849	6.8
1H2016							1.140	11.989	6.2
2H2016							1.076	13.065	5.9
1H2017							0.990	14.055	5.4
2H2017							0.942	14.997	5.2
1H2018							0.869	15.866	4.8
2H2018							0.829	16.695	4.5
1H2019							0.767	17.462	4.2
2H2019							0.733	18.195	4.0
1H2020							0.683	18.878	3.7
2H2020							0.651	19.529	3.6
1H2021							0.605	20.134	3.3
2H2021							0.581	20.715	3.2
1H2022							0.540	21.255	3.0
2H2022							0.520	21.775	2.8
1H2023							0.485	22.260	2.7
2H2023							0.467	22.727	2.6
1H2024							0.438	23.165	2.4
2H2024							0.421	23.586	2.3
1H2025							0.394	23.980	2.2
2H2025							0.381	24.361	2.1
1H2026							0.356	24.717	1.9
2H2026							0.345	25.062	1.9
1H2027							0.324	25.386	1.8
2H2027							0.314	25.700	1.7
1H2028							0.296	25.996	1.6
2H2028							0.286	26.282	1.6

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029							0.269	26.551	1.5
2H2029							0.262	26.813	1.4
1H2030							0.246	27.059	1.3
2H2030							0.240	27.299	1.3
1H2031							0.226	27.525	1.2
2H2031							0.220	27.745	1.2
1H2032							0.209	27.954	1.1
2H2032							0.203	28.157	1.1
1H2033							0.191	28.348	1.0
2H2033							0.187	28.535	1.0
1H2034									
2H2034									
1H2035									
2H2035									
1H2036									
2H2036									
1H2037									
2H2037									
1H2038									
2H2038									
1H2039									
2H2039									
1H2O40									
2H2O40									
1H2O41									
2H2O41									
1H2O42									
2H2042									
1H2043									
2H2043									
1H2044									
2H2044									
1H2045									
2H2045									
1H2046									

Gainsborough/Beckingham

		ı			ı				
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	28.567	28.567	156.4	34.283	34.283	187.7	34.256	34.256	187.6
1H2013	26.321	54.888	144.1	32.097	66.380	175.8	32.050	66.306	175.5
2H2013	25.063	79.951	137.2	31.056	97.436	170.1	31.026	97.332	169.9
1H2014	23.093	103.044	126.5	29.076	126.512	159.2	29.097	126.429	159.3
2H2014	21.989	125.033	120.4	28.132	154.644	154.0	28.232	154.661	154.6
1H2015	20.260	145.293	110.9	26.339	180.983	144.2	26.534	181.195	145.3
2H2015	19.291	164.584	105.6	25.484	206.467	139.5	25.799	206.994	141.3
1H2016	17.870	182.454	97.9	23.988	230.455	131.4	24.427	231.421	133.8
2H2016	16.919	199.373	92.6	23.079	253.534	126.4	23.662	255.083	129.6
1H2017	15.589	214.962	85.4	21.608	275.142	118.3	22.324	277.407	122.2
2H2017	14.844	229.806	81.3	20.907	296.049	114.5	21.785	299.192	119.3
1H2018	13.677	243.483	74.9	19.574	315.623	107.2	20.588	319.780	112.7
2H2018	13.023	256.506	71.3	18.939	334.562	103.7	20.123	339.903	110.2
1H2019	11.999	268.505	65.7	17.731	352.293	97.1	19.046	358.949	104.3
2H2019	11.426	279.931	62.6	17.156	369.449	93.9	18.644	377.593	102.1
1H2020	10.584	290.515	58.0	16.149	385.598	88.4	17.767	395.360	97.3
2H2020	10.021	300.536	54.9	15.537	401.135	85.1	17.318	412.678	94.8
1H2021	9.233	309.769	50.6	14.546	415.681	79.6	16.437	429.115	90.0
2H2021	8.791	318.560	48.1	14.074	429.755	77.1	16.133	445.248	88.3
1H2022	8.100	326.660	44.4	13.177	442.932	72.2	15.331	460.579	83.9
2H2022	7.713	334.373	42.2	12.750	455.682	69.8	15.065	475.644	82.5
1H2023	7.107	341.480	38.9	11.937	467.619	65.4	14.332	489.976	78.5
2H2023	6.767	348.247	37.1	11.549	479.168	63.2	14.099	504.075	77.2
1H2024				10.871	490.039	59.5	13.502	517.577	73.9
2H2024				10.459	500.498	57.3	13.222	530.799	72.4
1H2025				9.793	510.291	53.6	12.605	543.404	69.0
2H2025				9.475	519.766	51.9	12.426	555.830	68.0
1H2026				8.871	528.637	48.6	11.858	567.688	64.9
2H2026				8.583	537.220	47.0	11.699	579.387	64.1
1H2027				8.036	545.256	44.0	11.174	590.561	61.2
2H2027				7.775	553.031	42.6	11.035	601.596	60.4
1H2028				7.319	560.350	40.1	10.606	612.202	58.1
2H2028				7.041	567.391	38.6	10.424	622.626	57.1

	1P	1P	1P	2P	2P	2 P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029			2000	6.592	573.983	36.1	9.973	632.599	54.6
2H2029				6.378	580.361	34.9	9.864	642.463	54.0
1H2030				5.972	586.333	32.7	9.444	651.907	51.7
2H2030				5.778	592.111	31.6	9.347	661.254	51.2
1H2031				5.410	597.521	29.6	8.956	670.210	49.0
2H2031				5.234	602.755	28.7	8.871	679.081	48.6
1H2032				4.927	607.682	27.0	8.551	687.632	46.8
2H2032				4.740	612.422	26.0	8.428	696.060	46.1
1H2033							8.086	704.146	44.3
2H2033							8.019	712.165	43.9
1H2034							7.698	719.863	42.2
2H2034							7.639	727.502	41.8
1H2035							7.338	734.840	40.2
2H2035							7.286	742.126	39.9
1H2036							7.040	749.166	38.5
2H2036							6.956	756.122	38.1
1H2037							6.688	762.810	36.6
2H2037							6.648	769.458	36.4
1H2038							6.396	775.854	35.0
2H2038							6.360	782.214	34.8
1H2039							6.122	788.336	33.5
2H2039							6.091	794.427	33.4
1H2040							5.897	800.324	32.3
2H2040							5.838	806.162	32.0
1H2041							5.624	811.786	30.8
2H2041							5.600	817.386	30.7
1H2042							5.398	822.784	29.6
2H2042							5.377	828.161	29.4
1H2043							5.185	833.346	28.4
2H2043							5.167	838.513	28.3
1H2044							5.012	843.525	27.4
2H2044							4.969	848.494	27.2
1H2045							4.795	853.289	26.3
2H2045							4.782	858.071	26.2
1H2046							4.616	862.687	25.3

Glentworth

				ı				1	
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	18.818	18.818	103.0	21.779	21.779	119.3	21.841	21.841	119.6
1H2013	17.961	36.779	98.3	20.846	42.625	114.1	21.028	42.869	115.1
2H2013	17.716	54.495	97.0	20.620	63.245	112.9	20.927	63.796	114.6
1H2014	16.909	71.404	92.6	19.737	82.982	108.1	20.157	83.953	110.4
2H2014	16.678	88.082	91.3	19.524	102.506	106.9	20.069	104.022	109.9
1H2015	15.919	104.001	87.2	18.687	121.193	102.3	19.340	123.362	105.9
2H2015	15.702	119.703	86.0	18.485	139.678	101.2	19.264	142.626	105.5
1H2016	15.068	134.771	82.5	17.790	157.468	97.4	18.672	161.298	102.2
2H2016	14.780	149.551	80.9	17.499	174.967	95.8	18.503	179.801	101.3
1H2017	14.107	163.658	77.2	16.750	191.717	91.7	17.845	197.646	97.7
2H2017	13.915	177.573	76.2	16.569	208.286	90.7	17.789	215.435	97.4
1H2018	13.281	190.854	72.7	15.859	224.145	86.8	17.163	232.598	94.0
2H2018	13.100	203.954	71.7	15.687	239.832	85.9	17.115	249.713	93.7
1H2019	12.503	216.457	68.5	15.016	254.848	82.2	16.519	266.232	90.5
2H2019	12.333	228.790	67.5	14.853	269.701	81.3	16.479	282.711	90.2
1H2020	11.835	240.625	64.8	14.294	283.995	78.3	15.997	298.708	87.6
2H2020	11.609	252.234	63.6	14.061	298.056	77.0	15.876	314.584	86.9
1H2021	11.080	263.314	60.7	13.459	311.515	73.7	15.333	329.917	84.0
2H2021	10.929	274.243	59.8	13.313	324.828	72.9	15.307	345.224	83.8
1H2022	10.431	284.674	57.1	12.743	337.571	69.8	14.789	360.013	81.0
2H2022	10.289	294.963	56.3	12.605	350.176	69.0	14.768	374.781	80.9
1H2023	9.820	304.783	53.8	12.065	362.241	66.1	14.273	389.054	78.2
2H2023	9.687	314.470	53.0	11.934	374.175	65.3	14.257	403.311	78.1
1H2024	9.296	323.766	50.9	11.486	385.661	62.9	13.859	417.170	75.9
2H2024	9.118	332.884	49.9	11.298	396.959	61.9	13.771	430.941	75.4
1H2025	8.703	341.587	47.7	10.814	407.773	59.2	13.317	444.258	72.9
2H2025	8.584	350.171	47.0	10.697	418.470	58.6	13.310	457.568	72.9
1H2026	8.193	358.364	44.9	10.239	428.709	56.1	12.875	470.443	70.5
2H2026	8.081	366.445	44.2	10.128	438.837	55.5	12.873	483.316	70.5
1H2027	7.713	374.158	42.2	9.694	448.531	53.1	12.455	495.771	68.2
2H2027	7.608	381.766	41.7	9.589	458.120	52.5	12.456	508.227	68.2
1H2028	7.301	389.067	40.0	9.229	467.349	50.5	12.122	520.349	66.4
2H2028	7.161	396.228	39.2	9.078	476.427	49.7	12.058	532.407	66.0

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	6.835	403.063	37.4	8.689	485.116	47.6	11.674	544.081	63.9
2H2029	6.742	409.805	36.9	8.595	493.711	47.1	11.681	555.762	64.0
1H2030	6.435	416.240	35.2	8.227	501.938	45.0	11.311	567.073	61.9
2H2030	6.347	422.587	34.8	8.138	510.076	44.6	11.320	578.393	62.0
1H2031	6.058	428.645	33.2	7.790	517.866	42.7	10.964	589.357	60.0
2H2031	5.976	434.621	32.7	7.705	525.571	42.2	10.976	600.333	60.1
1H2032	5.735	440.356	31.4	7.415	532.986	40.6	10.692	611.025	58.5
2H2032	5.625	445.981	30.8	7.294	540.280	39.9	10.647	621.672	58.3
1H2033	5.369	451.350	29.4	6.982	547.262	38.2	10.317	631.989	56.5
2H2033	5.295	456.645	29.0	6.906	554.168	37.8	10.333	642.322	56.6
1H2034	5.054	461.699	27.7	6.611	560.779	36.2	10.015	652.337	54.8
2H2034	4.985	466.684	27.3	6.539	567.318	35.8	10.032	662.369	54.9
1H2035	4.758	471.442	26.1	6.259	573.577	34.3	9.726	672.095	53.3
2H2035	4.693	476.135	25.7	6.191	579.768	33.9	9.745	681.840	53.4
1H2036	4.504	480.639	24.7	5.958	585.726	32.6	9.501	691.341	52.0
2H2036	4.418	485.057	24.2	5.861	591.587	32.1	9.469	700.810	51.8
1H2037	4.217	489.274	23.1	5.610	597.197	30.7	9.184	709.994	50.3
2H2037	4.159	493.433	22.8	5.549	602.746	30.4	9.205	719.199	50.4
1H2038	3.970	497.403	21.7	5.312	608.058	29.1	8.930	728.129	48.9
2H2038	3.916	501.319	21.4	5.254	613.312	28.8	8.952	737.081	49.0
1H2039	3.737	505.056	20.5	5.029	618.341	27.5	8.686	745.767	47.6
2H2039	3.686	508.742	20.2	4.975	623.316	27.2	8.710	754.477	47.7
1H2040	3.538	512.280	19.4	4.788	628.104	26.2	8.499	762.976	46.5
2H2040	3.470	515.750	19.0	4.709	632.813	25.8	8.476	771.452	46.4
1H2041	3.312	519.062	18.1	4.508	637.321	24.7	8.227	779.679	45.0
2H2041	3.267	522.329	17.9	4.459	641.780	24.4	8.253	787.932	45.2
1H2042	3.118	525.447	17.1	4.268	646.048	23.4	8.012	795.944	43.9
2H2042	3.075	528.522	16.8	4.222	650.270	23.1	8.038	803.982	44.0
1H2043	2.935	531.457	16.1	4.041	654.311	22.1	7.804	811.786	42.7
2H2043	2.895	534.352	15.9	3.997	658.308	21.9	7.831	819.617	42.9
1H2044	2.779	537.131	15.2	3.847	662.155	21.1	7.647	827.264	41.9
2H2044	2.725	539.856	14.9	3.784	665.939	20.7	7.632	834.896	41.8
1H2045	2.601	542.457	14.2	3.622	669.561	19.8	7.413	842.309	40.6
2H2045	2.566	545.023	14.1	3.583	673.144	19.6	7.441	849.750	40.7
1H2046							7.228	856.978	39.6

Long Clawson

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	15.471	15.471	84.7	15.544	15.544	85.1	15.594	15.594	85.4
1H2013	14.549	30.020	79.7	14.756	30.300	80.8	14.905	30.499	81.6
2H2013	14.140	44.160	77.4	14.476	44.776	79.3	14.728	45.227	80.6
1H2014	13.298	57.458	72.8	13.742	58.518	75.2	14.089	59.316	77.1
2H2014	12.924	70.382	70.8	13.481	71.999	73.8	13.933	73.249	76.3
1H2015	12.154	82.536	66.6	12.798	84.797	70.1	13.337	86.586	73.0
2H2015	11.812	94.348	64.7	12.555	97.352	68.7	13.199	99.785	72.3
1H2016	11.169	105.517	61.2	11.984	109.336	65.6	12.714	112.499	69.6
2H2016	10.793	116.310	59.1	11.691	121.027	64.0	12.521	125.020	68.6
1H2017	10.151	126.461	55.6	11.098	132.125	60.8	12.003	137.023	65.7
2H2017	9.865	136.326	54.0	10.888	143.013	59.6	11.895	148.918	65.1
1H2018	9.278	145.604	50.8	10.336	153.349	56.6	11.411	160.329	62.5
2H2018	9.017	154.621	49.4	10.140	163.489	55.5	11.315	171.644	62.0
1H2019	8.480	163.101	46.4	9.626	173.115	52.7	10.861	182.505	59.5
2H2019	8.241	171.342	45.1	9.443	182.558	51.7	10.776	193.281	59.0
1H2020	7.792	179.134	42.7	9.013	191.571	49.4	10.406	203.687	57.0
2H2020	7.530	186.664	41.2	8.793	200.364	48.1	10.274	213.961	56.3
1H2021	7.082	193.746	38.8	8.347	208.711	45.7	9.873	223.834	54.1
2H2021	6.883	200.629	37.7	8.189	216.900	44.8	9.807	233.641	53.7
1H2022	6.473	207.102	35.4	7.774	224.674	42.6	9.429	243.070	51.6
2H2022	6.291	213.393	34.4	7.626	232.300	41.8	9.371	252.441	51.3
1H2023	5.916	219.309	32.4	7.240	239.540	39.6	9.015	261.456	49.4
2H2023	5.750	225.059	31.5	7.103	246.643	38.9	8.964	270.420	49.1
1H2024	5.436	230.495	29.8	6.779	253.422	37.1	8.675	279.095	47.5
2H2024	5.254	235.749	28.8	6.613	260.035	36.2	8.582	287.677	47.0
1H2025	4.941	240.690	27.1	6.278	266.313	34.4	8.263	295.940	45.2
2H2025	4.802	245.492	26.3	6.159	272.472	33.7	8.224	304.164	45.0
1H2026	4.516	250.008	24.7	5.847	278.319	32.0	7.923	312.087	43.4
2H2026	4.389	254.397	24.0	5.736	284.055	31.4	7.889	319.976	43.2
1H2027	4.127	258.524	22.6	5.445	289.500	29.8	7.603	327.579	41.6
2H2027	4.011	262.535	22.0	5.342	294.842	29.3	7.573	335.152	41.5
1H2028	3.793	266.328	20.8	5.099	299.941	27.9	7.342	342.494	40.2
2H2028	3.665	269.993	20.1	4.974	304.915	27.2	7.276	349.770	39.8

								1	
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	3.447	273.440	18.9	4.722	309.637	25.9	7.017	356.787	38.4
2H2029	3.350	276.790	18.3	4.632	314.269	25.4	6.996	363.783	38.3
1H2030	3.151	279.941	17.3	4.398	318.667	24.1	6.750	370.533	37.0
2H2030	3.062	283.003	16.8	4.314	322.981	23.6	6.732	377.265	36.9
1H2031	2.880	285.883	15.8	4.096	327.077	22.4	6.498	383.763	35.6
2H2031	2.799	288.682	15.3	4.018	331.095	22.0	6.483	390.246	35.5
1H2032	2.646	291.328	14.5	3.835	334.930	21.0	6.294	396.540	34.5
2H2032	2.557	293.885	14.0	3.741	338.671	20.5	6.247	402.787	34.2
1H2033	2.405	296.290	13.2	3.552	342.223	19.4	6.034	408.821	33.0
2H2033	2.337	298.627	12.8	3.484	345.707	19.1	6.024	414.845	33.0
1H2034	2.198	300.825	12.0	3.308	349.015	18.1	5.820	420.665	31.9
2H2034	2.136	302.961	11.7	3.245	352.260	17.8	5.812	426.477	31.8
1H2035	2.009	304.970	11.0	3.080	355.340	16.9	5.618	432.095	30.8
2H2035	1.953	306.923	10.7	3.022	358.362	16.5	5.612	437.707	30.7
1H2036	1.846	308.769	10.1	2.884	361.246	15.8	5.455	443.162	29.9
2H2036	1.784	310.553	9.8	2.814	364.060	15.4	5.421	448.583	29.7
1H2037	1.678	312.231	9.2	2.671	366.731	14.6	5.243	453.826	28.7
2H2037	1.631	313.862	8.9	2.621	369.352	14.4	5.241	459.067	28.7
1H2038				2.488	371.840	13.6	5.070	464.137	27.8
2H2038				2.441	374.281	13.4	5.069	469.206	27.8
1H2039				2.317	376.598	12.7	4.905	474.111	26.9
2H2039				2.273	378.871	12.4	4.905	479.016	26.9
1H2040				2.169	381.040	11.9	4.774	483.790	26.1
2H2040				2.116	383.156	11.6	4.749	488.539	26.0
1H2041				2.009	385.165	11.0	4.598	493.137	25.2
2H2041				1.971	387.136	10.8	4.601	497.738	25.2
1H2042				1.871	389.007	10.2	4.456	502.194	24.4
2H2042				1.836	390.843	10.1	4.460	506.654	24.4
1H2043				1.743	392.586	9.5	4.320	510.974	23.7
2H2043				1.710	394.296	9.4	4.324	515.298	23.7
1H2044				1.632	395.928	8.9	4.213	519.511	23.1
2H2044				1.592	397.520	8.7	4.195	523.706	23.0
1H2045				1.511	399.031	8.3	4.065	527.771	22.3
2H2045				1.482	400.513	8.1	4.072	531.843	22.3
1H2046							3.947	535.790	21.6

Nettleham

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	0.803	0.803	4.4	0.816	0.816	4.5	4.090	4.090	22.4
1H2013	0.691	1.494	3.8	0.725	1.541	4.0	3.660	7.750	20.0
2H2013	0.614	2.108	3.4	0.666	2.207	3.6	3.384	11.134	18.5
1H2014							3.028	14.162	16.6
2H2014							2.799	16.961	15.3
1H2015							2.505	19.466	13.7
2H2015							2.316	21.782	12.7
1H2016							2.083	23.865	11.4
2H2016							1.915	25.780	10.5
1H2017							1.713	27.493	9.4
2H2017							1.584	29.077	8.7
1H2018							1.418	30.495	7.8
2H2018							1.311	31.806	7.2
1H2019							1.173	32.979	6.4
2H2019							1.084	34.063	5.9
1H2020							0.975	35.038	5.3
2H2020							0.897	35.935	4.9
1H2021							0.802	36.737	4.4
2H2021							0.742	37.479	4.1
1H2022							0.664	38.143	3.6
2H2022							0.614	38.757	3.4
1H2023							0.549	39.306	3.0
2H2023							0.508	39.814	2.8
1H2024							0.457	40.271	2.5
2H2024							0.420	40.691	2.3
1H2025							0.376	41.067	2.1
2H2025							0.347	41.414	1.9
1H2026							0.311	41.725	1.7
2H2026							0.287	42.012	1.6
1H2027							0.257	42.269	1.4
2H2027							0.238	42.507	1.3
1H2028							0.214	42.721	1.2
2H2028							0.197	42.918	1.1

Rempstone

	1P	1P	1P	2P	2P	2P	3P	3P	3P
2112212	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	2.065	2.065	11.3	2.180	2.180	11.9	2.187	2.187	12.0
1H2013	1.981	4.046	10.8	2.092	4.272	11.5	2.112	4.299	11.6
2H2013	1.965	6.011	10.8	2.074	6.346	11.4	2.108	6.407	11.5
1H2014	1.885	7.896	10.3	1.990	8.336	10.9	2.036	8.443	11.1
2H2014	1.869	9.765	10.2	1.974	10.310	10.8	2.033	10.476	11.1
1H2015	1.793	11.558	9.8	1.894	12.204	10.4	1.965	12.441	10.8
2H2015	1.778	13.336	9.7	1.878	14.082	10.3	1.962	14.403	10.7
1H2016	1.716	15.052	9.4	1.811	15.893	9.9	1.907	16.310	10.4
2H2016	1.692	16.744	9.3	1.786	17.679	9.8	1.895	18.205	10.4
1H2017	1.623	18.367	8.9	1.714	19.393	9.4	1.832	20.037	10.0
2H2017	1.609	19.976	8.8	1.699	21.092	9.3	1.831	21.868	10.0
1H2018	1.544	21.520	8.5	1.630	22.722	8.9	1.771	23.639	9.7
2H2018	1.531	23.051	8.4	1.617	24.339	8.9	1.770	25.409	9.7
1H2019	1.469	24.520	8.0	1.551	25.890	8.5	1.712	27.121	9.4
2H2019	1.457	25.977	8.0	1.538	27.428	8.4	1.712	28.833	9.4
1H2020	1.405	27.382	7.7	1.484	28.912	8.1	1.666	30.499	9.1
2H2020	1.386	28.768	7.6	1.463	30.375	8.0	1.657	32.156	9.1
1H2021	1.329	30.097	7.3	1.404	31.779	7.7	1.604	33.760	8.8
2H2021	1.318	31.415	7.2	1.392	33.171	7.6	1.605	35.365	8.8
1H2022	1.265	32.680	6.9	1.335	34.506	7.3	1.554	36.919	8.5
2H2022	1.254	33.934	6.9	1.324	35.830	7.2	1.555	38.474	8.5
1H2023	1.203	35.137	6.6	1.271	37.101	7.0	1.506	39.980	8.2
2H2023	1.193	36.330	6.5	1.260	38.361	6.9	1.507	41.487	8.3
1H2024	1.151	37.481	6.3	1.215	39.576	6.7	1.468	42.955	8.0
2H2024	1.135	38.616	6.2	1.198	40.774	6.6	1.461	44.416	8.0
1H2025	1.089	39.705	6.0	1.150	41.924	6.3	1.416	45.832	7.8
2H2025	1.080	40.785	5.9	1.140	43.064	6.2	1.418	47.250	7.8
1H2026	1.036	41.821	5.7	1.094	44.158	6.0	1.374	48.624	7.5
2H2026	1.027	42.848	5.6	1.085	45.243	5.9	1.376	50.000	7.5
1H2027	0.986	43.834	5.4	1.041	46.284	5.7	1.334	51.334	7.3
2H2027	0.977	44.811	5.3	1.032	47.316	5.7	1.337	52.671	7.3
1H2028	0.943	45.754	5.2	0.996	48.312	5.5	1.303	53.974	7.1
2H2028	0.930	46.684	5.1	0.982	49.294	5.4	1.299	55.273	7.1

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	0.892	47.576	4.9	0.942	50.236	5.2	1.259	56.532	6.9
2H2029	0.884	48.460	4.8	0.934	51.170	5.1	1.262	57.794	6.9
1H2030	0.849	49.309	4.6	0.896	52.066	4.9	1.224	59.018	6.7
2H2030	0.841	50.150	4.6	0.888	52.954	4.9	1.227	60.245	6.7
1H2031	0.807	50.957	4.4	0.852	53.806	4.7	1.191	61.436	6.5
2H2031	0.801	51.758	4.4	0.845	54.651	4.6	1.194	62.630	6.5
1H2032	0.772	52.530	4.2	0.815	55.466	4.5	1.165	63.795	6.4
2H2032	0.762	53.292	4.2	0.804	56.270	4.4	1.161	64.956	6.4
1H2033	0.731	54.023	4.0	0.772	57.042	4.2	1.127	66.083	6.2
2H2033	0.725	54.748	4.0	0.765	57.807	4.2	1.131	67.214	6.2
1H2034	0.695	55.443	3.8	0.734	58.541	4.0	1.097	68.311	6.0
2H2034	0.689	56.132	3.8	0.728	59.269	4.0	1.101	69.412	6.0
1H2035	0.661	56.793	3.6	0.698	59.967	3.8	1.069	70.481	5.9
2H2035	0.656	57.449	3.6	0.692	60.659	3.8	1.072	71.553	5.9
1H2036	0.633	58.082	3.5	0.668	61.327	3.7	1.047	72.600	5.7
2H2036	0.624	58.706	3.4	0.659	61.986	3.6	1.045	73.645	5.7
1H2037	0.599	59.305	3.3	0.632	62.618	3.5	1.015	74.660	5.6
2H2037	0.593	59.898	3.2	0.627	63.245	3.4	1.019	75.679	5.6
1H2038				0.601	63.846	3.3	0.989	76.668	5.4
2H2038				0.596	64.442	3.3	0.993	77.661	5.4
1H2039				0.572	65.014	3.1	0.965	78.626	5.3
2H2039				0.567	65.581	3.1	0.969	79.595	5.3
1H2040							0.946	80.541	5.2
2H2040							0.945	81.486	5.2
1H2041							0.918	82.404	5.0
2H2041							0.922	83.326	5.0
1H2042							0.897	84.223	4.9
2H2042							0.901	85.124	4.9
1H2043							0.875	85.999	4.8
2H2043							0.879	86.878	4.8
1H2044							0.860	87.738	4.7
2H2044							0.859	88.597	4.7
1H2045							0.835	89.432	4.6
2H2045							0.839	90.271	4.6
1H2046									

Scampton

				1					
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	1.937	1.937	10.6	2.512	2.512	13.8	2.473	2.473	13.5
1H2013	1.786	3.723	9.8	2.358	4.870	12.9	2.334	4.807	12.8
2H2013	1.702	5.425	9.3	2.287	7.157	12.5	2.277	7.084	12.5
1H2014	1.570	6.995	8.6	2.147	9.304	11.8	2.152	9.236	11.8
2H2014	1.496	8.491	8.2	2.083	11.387	11.4	2.103	11.339	11.5
1H2015	1.380	9.871	7.6	1.955	13.342	10.7	1.991	13.330	10.9
2H2015	1.315	11.186	7.2	1.897	15.239	10.4	1.949	15.279	10.7
1H2016	1.219	12.405	6.7	1.790	17.029	9.8	1.857	17.136	10.2
2H2016	1.156	13.561	6.3	1.727	18.756	9.5	1.810	18.946	9.9
1H2017	1.066	14.627	5.8	1.621	20.377	8.9	1.718	20.664	9.4
2H2017	1.016	15.643	5.6	1.573	21.950	8.6	1.686	22.350	9.2
1H2018	0.937	16.580	5.1	1.476	23.426	8.1	1.603	23.953	8.8
2H2018	0.893	17.473	4.9	1.432	24.858	7.8	1.575	25.528	8.6
1H2019	0.824	18.297	4.5	1.345	26.203	7.4	1.498	27.026	8.2
2H2019	0.785	19.082	4.3	1.304	27.507	7.1	1.474	28.500	8.1
1H2020	0.728	19.810	4.0	1.231	28.738	6.7	1.411	29.911	7.7
2H2020	0.690	20.500	3.8	1.187	29.925	6.5	1.382	31.293	7.6
1H2021				1.115	31.040	6.1	1.318	32.611	7.2
2H2021				1.081	32.121	5.9	1.299	33.910	7.1
1H2022				1.015	33.136	5.6	1.240	35.150	6.8
2H2022				0.985	34.121	5.4	1.223	36.373	6.7
1H2023				0.924	35.045	5.1	1.168	37.541	6.4
2H2023				0.897	35.942	4.9	1.153	38.694	6.3
1H2024				0.846	36.788	4.6	1.109	39.803	6.1
2H2024				0.816	37.604	4.5	1.090	40.893	6.0
1H2025				0.766	38.370	4.2	1.042	41.935	5.7
2H2025				0.744	39.114	4.1	1.031	42.966	5.6
1H2026				0.698	39.812	3.8	0.987	43.953	5.4
2H2026				0.677	40.489	3.7	0.977	44.930	5.3
1H2027				0.636	41.125	3.5	0.936	45.866	5.1
2H2027				0.617	41.742	3.4	0.927	46.793	5.1
1H2028				0.582	42.324	3.2	0.894	47.687	4.9
2H2028				0.561	42.885	3.1	0.881	48.568	4.8

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029				0.527	43.412	2.9	0.845	49.413	4.6
2H2029				0.511	43.923	2.8	0.838	50.251	4.6
1H2030				0.480	44.403	2.6	0.805	51.056	4.4
2H2030				0.466	44.869	2.6	0.799	51.855	4.4
1H2031				0.437	45.306	2.4	0.767	52.622	4.2
2H2031				0.424	45.730	2.3	0.762	53.384	4.2
1H2032				0.400	46.130	2.2	0.736	54.120	4.0
2H2032				0.386	46.516	2.1	0.727	54.847	4.0
1H2033				0.362	46.878	2.0	0.699	55.546	3.8
2H2033				0.352	47.230	1.9	0.695	56.241	3.8
1H2034				0.330	47.560	1.8	0.669	56.910	3.7
2H2034				0.320	47.880	1.8	0.665	57.575	3.6
1H2035				0.300	48.180	1.6	0.640	58.215	3.5
2H2035				0.292	48.472	1.6	0.637	58.852	3.5
1H2036							0.616	59.468	3.4
2H2036							0.610	60.078	3.3
1H2037							0.588	60.666	3.2
2H2037							0.585	61.251	3.2
1H2038							0.564	61.815	3.1
2H2038							0.562	62.377	3.1
1H2039							0.542	62.919	3.0
2H2039							0.540	63.459	3.0
1H2040							0.524	63.983	2.9
2H2040							0.519	64.502	2.8
1H2041							0.501	65.003	2.7
2H2041							0.500	65.503	2.7
1H2042							0.483	65.986	2.6
2H2042							0.481	66.467	2.6
1H2043							0.465	66.932	2.5
2H2043							0.464	67.396	2.5
1H2044							0.451	67.847	2.5
2H2044							0.447	68.294	2.4
1H2045							0.432	68.726	2.4
2H2045							0.432	69.158	2.4
1H2046									

Scampton North

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	20.493	20.493	112.2	23.521	23.521	128.8	23.609	23.609	129.3
1H2013	19.447	39.940	106.5	22.446	45.967	122.9	22.700	46.309	124.3
2H2013	19.071	59.011	104.4	22.135	68.102	121.2	22.562	68.871	123.5
1H2014	18.097	77.108	99.1	21.123	89.225	115.7	21.705	90.576	118.9
2H2014	17.747	94.855	97.2	20.831	110.056	114.1	21.584	112.160	118.2
1H2015	16.840	111.695	92.2	19.878	129.934	108.8	20.774	132.934	113.8
2H2015	16.515	128.210	90.4	19.603	149.537	107.3	20.668	153.602	113.2
1H2016	15.756	143.966	86.3	18.809	168.346	103.0	20.010	173.612	109.6
2H2016	15.365	159.331	84.1	18.445	186.791	101.0	19.806	193.418	108.5
1H2017	14.580	173.911	79.8	17.602	204.393	96.4	19.081	212.499	104.5
2H2017	14.298	188.209	78.3	17.358	221.751	95.0	19.000	231.499	104.0
1H2018	13.568	201.777	74.3	16.564	238.315	90.7	18.312	249.811	100.3
2H2018	13.306	215.083	72.9	16.335	254.650	89.4	18.242	268.053	99.9
1H2019	12.626	227.709	69.1	15.588	270.238	85.4	17.588	285.641	96.3
2H2019	12.382	240.091	67.8	15.373	285.611	84.2	17.528	303.169	96.0
1H2020	11.813	251.904	64.7	14.749	300.360	80.8	16.999	320.168	93.1
2H2020	11.520	263.424	63.1	14.464	314.824	79.2	16.854	337.022	92.3
1H2021	10.932	274.356	59.9	13.803	328.627	75.6	16.262	353.284	89.0
2H2021	10.720	285.076	58.7	13.612	342.239	74.5	16.219	369.503	88.8
1H2022	10.173	295.249	55.7	12.989	355.228	71.1	15.656	385.159	85.7
2H2022	9.976	305.225	54.6	12.810	368.038	70.1	15.620	400.779	85.5
1H2023	9.467	314.692	51.8	12.224	380.262	66.9	15.083	415.862	82.6
2H2023	9.284	323.976	50.8	12.055	392.317	66.0	15.053	430.915	82.4
1H2024	8.857	332.833	48.5	11.566	403.883	63.3	14.620	445.535	80.1
2H2024	8.637	341.470	47.3	11.343	415.226	62.1	14.515	460.050	79.5
1H2025	8.196	349.666	44.9	10.824	426.050	59.3	14.026	474.076	76.8
2H2025	8.038	357.704	44.0	10.674	436.724	58.4	14.007	488.083	76.7
1H2026	7.627	365.331	41.8	10.186	446.910	55.8	13.539	501.622	74.1
2H2026	7.480	372.811	41.0	10.045	456.955	55.0	13.525	515.147	74.1
1H2027	7.098	379.909	38.9	9.586	466.541	52.5	13.077	528.224	71.6
2H2027	6.960	386.869	38.1	9.453	475.994	51.8	13.068	541.292	71.6
1H2028	6.641	393.510	36.4	9.070	485.064	49.7	12.708	554.000	69.6
2H2028	6.476	399.986	35.5	8.895	493.959	48.7	12.632	566.632	69.2

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	6.145	406.131	33.6	8.488	502.447	46.5	12.220	578.852	66.9
2H2029	6.026	412.157	33.0	8.371	510.818	45.8	12.219	591.071	66.9
1H2030	5.719	417.876	31.3	7.988	518.806	43.7	11.824	602.895	64.7
2H2030	5.608	423.484	30.7	7.877	526.683	43.1	11.825	614.720	64.8
1H2031	5.322	428.806	29.1	7.517	534.200	41.2	11.446	626.166	62.7
2H2031	5.219	434.025	28.6	7.413	541.613	40.6	11.451	637.617	62.7
1H2O32	4.979	439.004	27.3	7.113	548.726	38.9	11.147	648.764	61.0
2H2032	4.855	443.859	26.6	6.975	555.701	38.2	11.093	659.857	60.7
1H2033	4.607	448.466	25.2	6.656	562.357	36.4	10.742	670.599	58.8
2H2033	4.518	452.984	24.7	6.564	568.921	35.9	10.752	681.351	58.9
1H2034	4.288	457.272	23.5	6.264	575.185	34.3	10.415	691.766	57.0
2H2034	4.205	461.477	23.0	6.177	581.362	33.8	10.427	702.193	57.1
1H2035	3.990	465.467	21.8	5.895	587.257	32.3	10.102	712.295	55.3
2H2035	3.913	469.380	21.4	5.813	593.070	31.8	10.116	722.411	55.4
1H2036	3.733	473.113	20.4	5.578	598.648	30.5	9.857	732.268	54.0
2H2036	3.640	476.753	19.9	5.470	604.118	30.0	9.819	742.087	53.8
1H2037	3.455	480.208	18.9	5.220	609.338	28.6	9.517	751.604	52.1
2H2037	3.388	483.596	18.6	5.147	614.485	28.2	9.534	761.138	52.2
1H2038	3.215	486.811	17.6	4.912	619.397	26.9	9.244	770.382	50.6
2H2038	3.152	489.963	17.3	4.844	624.241	26.5	9.263	779.645	50.7
1H2039	2.992	492.955	16.4	4.623	628.864	25.3	8.982	788.627	49.2
2H2039	2.934	495.889	16.1	4.559	633.423	25.0	9.002	797.629	49.3
1H2040	2.799	498.688	15.3	4.374	637.797	24.0	8.779	806.408	48.1
2H2040	2.729	501.417	14.9	4.289	642.086	23.5	8.752	815.160	47.9
1H2041	2.590	504.007	14.2	4.093	646.179	22.4	8.490	823.650	46.5
2H2041	2.540	506.547	13.9	4.037	650.216	22.1	8.513	832.163	46.6
1H2042	2.410	508.957	13.2	3.852	654.068	21.1	8.260	840.423	45.2
2H2042	2.364	511.321	12.9	3.799	657.867	20.8	8.283	848.706	45.4
1H2043	2.243	513.564	12.3	3.625	661.492	19.8	8.038	856.744	44.0
2H2043	2.200	515.764	12.0	3.575	665.067	19.6	8.062	864.806	44.1
1H2044	2.099	517.863	11.5	3.430	668.497	18.8	7.869	872.675	43.1
2H2044	2.046	519.909	11.2	3.364	671.861	18.4	7.850	880.525	43.0
1H2045	1.942	521.851	10.6	3.210	675.071	17.6	7.621	888.146	41.7
2H2045	1.904	523.755	10.4	3.165	678.236	17.3	7.647	895.793	41.9
1H2046							7.425	903.218	40.7

Stainton

							1		
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	1.125	1.125	6.2	1.845	1.845	10.1	1.973	1.973	10.8
1H2013	1.001	2.126	5.5	1.715	3.560	9.4	1.871	3.844	10.2
2H2013	0.919	3.045	5.0	1.648	5.208	9.0	1.834	5.678	10.0
1H2014				1.533	6.741	8.4	1.741	7.419	9.5
2H2014				1.473	8.214	8.1	1.710	9.129	9.4
1H2015				1.370	9.584	7.5	1.625	10.754	8.9
2H2015				1.316	10.900	7.2	1.597	12.351	8.7
1H2016				1.230	12.130	6.7	1.528	13.879	8.4
2H2016				1.176	13.306	6.4	1.495	15.374	8.2
1H2017				1.093	14.399	6.0	1.424	16.798	7.8
2H2017				1.051	15.450	5.8	1.403	18.201	7.7
1H2018				0.977	16.427	5.3	1.338	19.539	7.3
2H2018				0.939	17.366	5.1	1.319	20.858	7.2
1H2019				0.873	18.239	4.8	1.259	22.117	6.9
2H2019				0.839	19.078	4.6	1.242	23.359	6.8
1H2020				0.784	19.862	4.3	1.193	24.552	6.5
2H2020				0.749	20.611	4.1	1.172	25.724	6.4
1H2021				0.697	21.308	3.8	1.121	26.845	6.1
2H2021				0.670	21.978	3.7	1.108	27.953	6.1
1H2022				0.623	22.601	3.4	1.060	29.013	5.8
2H2022				0.598	23.199	3.3	1.048	30.061	5.7
1H2023				0.556	23.755	3.0	1.004	31.065	5.5
2H2023				0.535	24.290	2.9	0.994	32.059	5.4
1H2024				0.500	24.790	2.7	0.958	33.017	5.2
2H2024				0.478	25.268	2.6	0.943	33.960	5.2
1H2025							0.905	34.865	5.0
2H2025							0.897	35.762	4.9
1H2026							0.860	36.622	4.7
2H2026							0.853	37.475	4.7
1H2027							0.819	38.294	4.5
2H2027							0.813	39.107	4.5
1H2028							0.785	39.892	4.3
2H2028							0.776	40.668	4.2

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029							0.745	41.413	4.1
2H2029							0.741	42.154	4.1
1H2030							0.712	42.866	3.9
2H2030							0.708	43.574	3.9
1H2031							0.681	44.255	3.7
2H2031							0.678	44.933	3.7
1H2032							0.656	45.589	3.6
2H2032							0.649	46.238	3.6
1H2033							0.625	46.863	3.4
2H2033							0.622	47.485	3.4
1H2034							0.599	48.084	3.3
2H2034							0.597	48.681	3.3
1H2035							0.575	49.256	3.1
2H2035							0.573	49.829	3.1
1H2036							0.556	50.385	3.0
2H2036							0.551	50.936	3.0
1H2037							0.531	51.467	2.9
2H2037							0.530	51.997	2.9
1H2038							0.511	52.508	2.8
2H2038							0.510	53.018	2.8
1H2039							0.492	53.510	2.7
2H2039							0.491	54.001	2.7
1H2040							0.477	54.478	2.6
2H2040							0.473	54.951	2.6
1H2041							0.457	55.408	2.5
2H2041							0.457	55.865	2.5
1H2042							0.441	56.306	2.4
2H2O42							0.441	56.747	2.4
1H2043							0.426	57.173	2.3
2H2043							0.426	57.599	2.3
1H2044							0.414	58.013	2.3
2H2044							0.411	58.424	2.3
1H2045							0.398	58.822	2.2
2H2045							0.398	59.220	2.2
1H2046									

South Leverton

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	0.406	0.406	2.2	0.699	0.699	3.8	0.720	0.720	3.9
1H2013	0.357	0.763	2.0	0.620	1.319	3.4	0.678	1.398	3.7
2H2013	0.325	1.088	1.8	0.568	1.887	3.1	0.661	2.059	3.6
1H2014							0.623	2.682	3.4
2H2014							0.607	3.289	3.3
1H2015							0.573	3.862	3.1
2H2015							0.560	4.422	3.1
1H2016							0.532	4.954	2.9
2H2016							0.516	5.470	2.8
1H2017							0.488	5.958	2.7
2H2017							0.478	6.436	2.6
1H2018							0.452	6.888	2.5
2H2018							0.443	7.331	2.4
1H2019							0.419	7.750	2.3
2H2019							0.411	8.161	2.3
1H2020							0.392	8.553	2.1
2H2020							0.382	8.935	2.1
1H2021							0.362	9.297	2.0
2H2021							0.355	9.652	1.9
1H2022							0.338	9.990	1.9
2H2022							0.331	10.321	1.8
1H2023							0.315	10.636	1.7
2H2023							0.309	10.945	1.7
1H2024							0.296	11.241	1.6
2H2024							0.289	11.530	1.6
1H2025							0.275	11.805	1.5
2H2025							0.271	12.076	1.5
1H2026							0.258	12.334	1.4
2H2026							0.254	12.588	1.4
1H2027							0.242	12.830	1.3
2H2027							0.238	13.068	1.3
1H2028							0.229	13.297	1.3
2H2028							0.224	13.521	1.2

				ı					
	1P	1P	1P	2P	2 P	2 P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029							0.214	13.735	1.2
2H2029							0.211	13.946	1.2
1H2030							0.201	14.147	1.1
2H2030							0.199	14.346	1.1
1H2031							0.190	14.536	1.0
2H2O31							0.187	14.723	1.0
1H2032									
2H2032									
1H2033									
2H2033									
1H2034									
2H2034									
1H2035									
2H2035									
1H2036									
2H2036									
1H2037									
2H2037									
1H2038									
2H2038									
1H2039									
2H2039									
1H2040									
2H2O40									
1H2041									
2H2041									
1H2042									
2H2042									
1H2043									
2H2043									
1H2044									
2H2044									
1H2045									
2H2045									
1H2046									

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	98.444	98.444	539.0	124.129	124.129	679.7	127.865	127.865	700.2
1H2013	92.304	190.748	505.4	117.082	241.211	641.1	121.252	249.117	663.9
2H2013	89.439	280.187	489.7	114.127	355.338	624.9	118.903	368.020	651.1
1H2014	83.860	364.047	459.2	107.648	462.986	589.4	112.899	480.919	618.2
2H2014	81.258	445.305	444.9	104.931	567.917	574.6	110.851	591.770	607.0
1H2015	76.189	521.494	417.2	98.974	666.891	542.0	105.381	697.151	577.0
2H2015	73.824	595.318	404.2	96.477	763.368	528.3	103.590	800.741	567.2
1H2016	69.593	664.911	381.1	91.492	854.860	501.0	99.126	899.867	542.8
2H2016	67.054	731.965	367.2	88.682	943.542	485.6	97.003	996.870	531.2
1H2017	62.871	794.836	344.3	83.648	1027.190	458.0	92.419	1089.289	506.1
2H2017	60.920	855.756	333.6	81.537	1108.727	446.5	91.040	1180.329	498.5
1H2018	57.120	912.876	312.8	76.908	1185.635	421.1	86.824	1267.153	475.4
2H2018	55.347	968.223	303.1	74.967	1260.602	410.5	85.611	1352.764	468.8
1H2019	51.895	1020.118	284.2	70.711	1331.313	387.2	81.722	1434.486	447.5
2H2019	50.284	1070.402	275.3	68.926	1400.239	377.4	80.653	1515.139	441.6
1H2020	47.402	1117.804	259.6	65.365	1465.604	357.9	77.477	1592.616	424.2
2H2020	45.672	1163.476	250.1	63.358	1528.962	346.9	76.102	1668.718	416.7
1H2021	42.823	1206.299	234.5	59.761	1588.723	327.2	72.769	1741.487	398.5
2H2021	41.494	1247.793	227.2	58.253	1646.976	319.0	71.937	1813.424	393.9
1H2022	38.906	1286.699	213.0	54.946	1701.922	300.9	68.840	1882.264	376.9
2H2022	37.699	1324.398	206.4	53.559	1755.481	293.3	68.104	1950.368	372.9
1H2023	35.347	1359.745	193.5	50.519	1806.000	276.6	65.220	2015.588	357.1
2H2023	34.250	1393.995	187.5	49.244	1855.244	269.6	64.570	2080.158	353.6
1H2024	32.287	1426.282	176.8	46.699	1901.943	255.7	62.217	2142.375	340.7
2H2024	31.109	1457.391	170.3	45.265	1947.208	247.9	61.295	2203.670	335.6
1H2025	29.168	1486.559	159.7	42.696	1989.904	233.8	58.780	2262.450	321.9
2H2025	28.263	1514.822	154.8	41.618	2031.522	227.9	58.271	2320.721	319.1
1H2026	26.500	1541.322	145.1	39.255	2070.777	214.9	55.916	2376.637	306.2
2H2026	25.678	1567.000	140.6	38.265	2109.042	209.5	55.466	2432.103	303.7
1H2027	24.076	1591.076	131.8	36.092	2145.134	197.6	53.255	2485.358	291.6
2H2027	23.329	1614.405	127.7	35.181	2180.315	192.6	52.858	2538.216	289.4
1H2028	21.992	1636.397	120.4	33.364	2213.679	182.7	51.058	2589.274	279.6
2H2028	21.189	1657.586	116.0	32.339	2246.018	177.1	50.424	2639.698	276.1

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	19.867	1677.453	108.8	30.503	2276.521	167.0	48.469	2688.167	265.4
2H2029	19.251	1696.704	105.4	29.733	2306.254	162.8	48.160	2736.327	263.7
1H2030	18.050	1714.754	98.8	28.046	2334.300	153.6	46.317	2782.644	253.6
2H2030	17.490	1732.244	95.8	27.338	2361.638	149.7	46.045	2828.689	252.1
1H2031	16.399	1748.643	89.8	25.786	2387.424	141.2	44.305	2872.994	242.6
2H2O31	15.890	1764.533	87.0	25.135	2412.559	137.6	44.066	2917.060	241.3
1H2032	14.979	1779.512	82.0	23.836	2436.395	130.5	42.653	2959.713	233.6
2H2032	14.433	1793.945	79.0	23.104	2459.499	126.5	42.207	3001.920	231.1
1H2033				21.793	2481.292	119.3	40.650	3042.570	222.6
2H2033				21.243	2502.535	116.3	40.469	3083.039	221.6
1H2034				20.037	2522.572	109.7	38.993	3122.032	213.5
2H2034				19.531	2542.103	106.9	38.835	3160.867	212.6
1H2035				18.422	2560.525	100.9	37.435	3198.302	205.0
2H2035				17.957	2578.482	98.3	37.298	3235.600	204.2
1H2036				17.030	2595.512	93.3	36.165	3271.765	198.0
2H2036				16.507	2612.019	90.4	35.847	3307.612	196.3
1H2037				15.570	2627.589	85.3	34.582	3342.194	189.4
2H2037				15.177	2642.766	83.1	34.483	3376.677	188.8
1H2038				14.315	2657.081	78.4	33.278	3409.955	182.2
2H2038				13.954	2671.035	76.4	33.195	3443.150	181.8
1H2039				13.162	2684.197	72.1	32.047	3475.197	175.5
2H2039				12.829	2697.026	70.2	31.978	3507.175	175.1
1H2040							31.051	3538.226	170.0
2H2040							30.823	3569.049	168.8
1H2041							29.777	3598.826	163.0
2H2041							29.733	3628.559	162.8
1H2042							28.734	3657.293	157.3
2H2042							28.700	3685.993	157.2
1H2043							27.744	3713.737	151.9
2H2043							27.720	3741.457	151.8
1H2044							26.951	3768.408	147.6
2H2044							26.786	3795.194	146.7
1H2045							25.909	3821.103	141.9
2H2045							25.902	3847.005	141.8
1H2046							25.060	3872.065	137.2

Gas Profiles Albury

	1P	1P	1P	2P	2P	2P	3P	3P	3P
21.22.2	Bscf	Bscf	MMscf/d	Bscf	Bscf	MMscf/d	Bscf	Bscf	MMscf/d
2H2012	0.058	0.117	0.32	0.058	0.117	0.32	0.058	0.117	0.32
1H2013	0.058	0.175	0.32	0.058	0.175	0.32	0.058	0.175	0.32
2H2013	0.058	0.234	0.32	0.058	0.234	0.32	0.058	0.234	0.32
1H2014	0.058	0.292	0.32	0.058	0.292	0.32	0.058	0.292	0.32
2H2014	0.058	0.351	0.32	0.058	0.351	0.32	0.058	0.351	0.32
1H2015	0.058	0.409	0.32	0.058	0.409	0.32	0.058	0.409	0.32
2H2015	0.058	0.468	0.32	0.058	0.468	0.32	0.058	0.468	0.32
1H2016	0.058	0.526	0.32	0.058	0.526	0.32	0.058	0.526	0.32
2H2016	0.058	0.584	0.32	0.058	0.584	0.32	0.058	0.584	0.32
1H2017	0.058	0.643	0.32	0.058	0.643	0.32	0.058	0.643	0.32
2H2017	0.058	0.701	0.32	0.058	0.701	0.32	0.058	0.701	0.32
1H2018			-	0.058	0.760	0.32	0.058	0.760	0.32
2H2018			-	0.058	0.818	0.32	0.058	0.818	0.32
1H2019			-	0.058	0.877	0.32	0.058	0.877	0.32
2H2019			-	0.058	0.935	0.32	0.058	0.935	0.32
1H2020			-	0.058	0.993	0.32	0.058	0.993	0.32
2H2020			-	0.058	1.052	0.32	0.058	1.052	0.32
1H2021			-	0.058	1.110	0.32	0.058	1.110	0.32
2H2021			-	0.058	1.169	0.32	0.058	1.169	0.32
1H2022			-	0.058	1.227	0.32	0.058	1.227	0.32
2H2022			-	0.058	1.286	0.32	0.058	1.286	0.32
1H2023			-	0.058	1.344	0.32	0.058	1.344	0.32
2H2023			-	0.058	1.403	0.32	0.058	1.403	0.32
1H2024			-	0.058	1.461	0.32	0.058	1.461	0.32
2H2024			-	0.058	1.519	0.32	0.058	1.519	0.32
1H2025			-	0.058	1.578	0.32	0.058	1.578	0.32
2H2025			-	0.058	1.636	0.32	0.058	1.636	0.32
1H2026			-	0.058	1.695	0.32	0.058	1.695	0.32
2H2026			-	0.058	1.753	0.32	0.058	1.753	0.32
1H2027			-	0.058	1.812	0.32	0.058	1.812	0.32
2H2027			-	0.058	1.870	0.32	0.058	1.870	0.32
1H2028			-	0.058	1.929	0.32	0.058	1.929	0.32
2H2028			-	0.058	1.987	0.32	0.058	1.987	0.32

		1							
	1P	1P	1P	2 P	2P	2P	3P	3P	3P
	Bscf	Bscf	MMscf/d	Bscf	Bscf	MMscf/d	Bscf	Bscf	MMscf/d
1H2029			-	0.058	2.045	0.32	0.058	2.045	0.32
2H2029			-	0.058	2.104	0.32	0.058	2.104	0.32
1H2030			-	0.058	2.162	0.32	0.058	2.162	0.32
2H2030			-	0.058	2.221	0.32	0.058	2.221	0.32
1H2031			-			-	0.058	2.279	0.32
2H2031			-			-	0.058	2.338	0.32
1H2032			-			-	0.058	2.396	0.32
2H2032			-			-	0.058	2.454	0.32
1H2033			-			-	0.058	2.513	0.32
2H2033			-			-	0.058	2.571	0.32
1H2034			-			-	0.058	2.630	0.32
2H2034			-			-	0.058	2.688	0.32
1H2035			-			-			-
2H2035			-			-			-
1H2036			-			-			-
2H2036			-						-
1H2037									
2H2037									
1H2038									
2H2038									
1H2039									
2H2039									
1H2040									
2H2040									
1H2041									
2H2041									
1H2042									
2H2042									
1H2043									
2H2043									
1H2044									
2H2044									
1H2045									
2H2045									
1H2046									

Avington

				Ι					
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	6.091	6.091	33.4	9.563	9.563	52.4	9.913	9.913	54.3
1H2013	4.875	10.966	26.7	7.904	17.467	43.3	8.843	18.756	48.4
2H2013	4.033	14.999	22.1	6.751	24.218	37.0	8.189	26.945	44.8
1H2014	3.228	18.227	17.7	5.580	29.798	30.6	7.369	34.314	40.4
2H2014	2.671	20.898	14.6	4.766	34.564	26.1	6.878	41.192	37.7
1H2015	2.138	23.036	11.7	3.939	38.503	21.6	6.235	47.427	34.1
2H2015	1.769	24.805	9.7	3.365	41.868	18.4	5.859	53.286	32.1
1H2016				2.795	44.663	15.3	5.372	58.658	29.4
2H2016				2.373	47.036	13.0	5.049	63.707	27.6
1H2017				1.962	48.998	10.7	4.629	68.336	25.3
2H2017				1.676	50.674	9.2	4.397	72.733	24.1
1H2018				1.385	52.059	7.6	4.051	76.784	22.2
2H2018				1.183	53.242	6.5	3.864	80.648	21.2
1H2019				0.978	54.220	5.4	3.574	84.222	19.6
2H2019				0.835	55.055	4.6	3.422	87.644	18.7
1H2020				0.694	55.749	3.8	3.194	90.838	17.5
2H2020				0.589	56.338	3.2	3.051	93.889	16.7
1H2021							2.841	96.730	15.6
2H2021							2.738	99.468	15.0
1H2022							2.557	102.025	14.0
2H2022							2.471	104.496	13.5
1H2023							2.314	106.810	12.7
2H2023							2.241	109.051	12.3
1H2024							2.115	111.166	11.6
2H2024							2.041	113.207	11.2
1H2025									
2H2025									
1H2026									
2H2026									
1H2027									
2H2027									
1H2028									
2H2028									

Bletchingley

					1				
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	31.773	31.773	174.0	35.109	35.109	192.2	34.948	34.948	191.4
1H2013	28.097	59.870	153.9	32.058	67.167	175.5	31.860	66.808	174.5
2H2013	25.677	85.547	140.6	30.251	97.418	165.6	30.101	96.909	164.8
1H2014	22.706	108.253	124.3	27.622	125.040	151.2	27.590	124.499	151.1
2H2014	20.750	129.003	113.6	26.065	151.105	142.7	26.197	150.696	143.4
1H2015	18.349	147.352	100.5	23.800	174.905	130.3	24.123	174.819	132.1
2H2015	16.769	164.121	91.8	22.458	197.363	123.0	23.006	197.825	126.0
1H2016	14.906	179.027	81.6	20.616	217.979	112.9	21.386	219.211	117.1
2H2016	13.543	192.570	74.2	19.343	237.322	105.9	20.358	239.569	111.5
1H2017	11.976	204.546	65.6	17.662	254.984	96.7	18.891	258.460	103.4
2H2017	10.945	215.491	59.9	16.666	271.650	91.3	18.147	276.607	99.4
1H2018	9.678	225.169	53.0	15.218	286.868	83.3	16.894	293.501	92.5
2H2018	8.845	234.014	48.4	14.360	301.228	78.6	16.278	309.779	89.1
1H2019	7.821	241.835	42.8	13.112	314.340	71.8	15.198	324.977	83.2
2H2019	7.148	248.983	39.1	12.373	326.713	67.8	14.684	339.661	80.4
1H2020	6.354	255.337	34.8	11.358	338.071	62.2	13.819	353.480	75.7
2H2020	5.773	261.110	31.6	10.657	348.728	58.4	13.309	366.789	72.9
1H2021	5.105	266.215	28.0	9.731	358.459	53.3	12.488	379.277	68.4
2H2021	4.665	270.880	25.5	9.182	367.641	50.3	12.122	391.399	66.4
1H2022	4.125	275.005	22.6	8.384	376.025	45.9	11.398	402.797	62.4
2H2022	3.770	278.775	20.6	7.912	383.937	43.3	11.087	413.884	60.7
1H2023	3.334	282.109	18.3	7.224	391.161	39.6	10.445	424.329	57.2
2H2023	3.047	285.156	16.7	6.817	397.978	37.3	10.179	434.508	55.7
1H2024				6.258	404.236	34.3	9.659	444.167	52.9
2H2024				5.871	410.107	32.1	9.376	453.543	51.3
1H2025				5.361	415.468	29.4	8.864	462.407	48.5
2H2025				5.059	420.527	27.7	8.666	471.073	47.5
1H2026				4.619	425.146	25.3	8.205	479.278	44.9
2H2026				4.359	429.505	23.9	8.034	487.312	44.0
1H2027				3.980	433.485	21.8	7.617	494.929	41.7
2H2027				3.756	437.241	20.6	7.469	502.398	40.9
1H2028				3.448	440.689	18.9	7.129	509.527	39.0
2H2028				3.235	443.924	17.7	6.960	516.487	38.1

		l		<u> </u>	ı ı			1	
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029				2.954	446.878	16.2	6.616	523.103	36.2
2H2029				2.787	449.665	15.3	6.502	529.605	35.6
1H2030				2.545	452.210	13.9	6.188	535.793	33.9
2H2030				2.401	454.611	13.1	6.088	541.881	33.3
1H2031							5.800	547.681	31.8
2H2031							5.713	553.394	31.3
1H2032							5.477	558.871	30.0
2H2032							5.370	564.241	29.4
1H2033							5.126	569.367	28.1
2H2033							5.058	574.425	27.7
1H2034							4.832	579.257	26.5
2H2034							4.773	584.030	26.1
1H2035							4.563	588.593	25.0
2H2035							4.511	593.104	24.7
1H2036							4.340	597.444	23.8
2H2036							4.269	601.713	23.4
1H2037							4.088	605.801	22.4
2H2037							4.047	609.848	22.2
1H2038							3.878	613.726	21.2
2H2038							3.841	617.567	21.0
1H2039							3.684	621.251	20.2
2H2039							3.651	624.902	20.0
1H2040							3.523	628.425	19.3
2H2040							3.475	631.900	19.0
1H2041							3.336	635.236	18.3
2H2O41							3.311	638.547	18.1
1H2042							3.181	641.728	17.4
2H2042							3.158	644.886	17.3
1H2043							3.036	647.922	16.6
2H2043							3.016	650.938	16.5
1H2044							2.916	653.854	16.0
2H2044							2.883	656.737	15.8
1H2045							2.774	659.511	15.2
2H2045							2.759	662.270	15.1
1H2046							2.656	664.926	14.5

Goodworth

								1	
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	3.278	3.278	17.9	4.485	4.485	24.6	4.430	4.430	24.3
1H2013	3.160	6.438	17.3	4.323	8.808	23.7	4.276	8.706	23.4
2H2013	3.149	9.587	17.2	4.307	13.115	23.6	4.266	12.972	23.4
1H2014	3.035	12.622	16.6	4.152	17.267	22.7	4.120	17.092	22.6
2H2014	3.024	15.646	16.6	4.136	21.403	22.6	4.112	21.204	22.5
1H2015	2.915	18.561	16.0	3.987	25.390	21.8	3.972	25.176	21.7
2H2015	2.904	21.465	15.9	3.972	29.362	21.7	3.965	29.141	21.7
1H2016	2.815	24.280	15.4	3.850	33.212	21.1	3.853	32.994	21.1
2H2016	2.789	27.069	15.3	3.814	37.026	20.9	3.826	36.820	21.0
1H2017	2.688	29.757	14.7	3.677	40.703	20.1	3.698	40.518	20.2
2H2017	2.678	32.435	14.7	3.663	44.366	20.1	3.695	44.213	20.2
1H2018	2.582	35.017	14.1	3.531	47.897	19.3	3.573	47.786	19.6
2H2018	2.572	37.589	14.1	3.518	51.415	19.3	3.570	51.356	19.5
1H2019	2.479	40.068	13.6	3.391	54.806	18.6	3.453	54.809	18.9
2H2019	2.470	42.538	13.5	3.379	58.185	18.5	3.452	58.261	18.9
1H2020	2.394	44.932	13.1	3.275	61.460	17.9	3.357	61.618	18.4
2H2020	2.372	47.304	13.0	3.244	64.704	17.8	3.339	64.957	18.3
1H2021	2.286	49.590	12.5	3.128	67.832	17.1	3.231	68.188	17.7
2H2021	2.278	51.868	12.5	3.116	70.948	17.1	3.231	71.419	17.7
1H2022	2.196	54.064	12.0	3.004	73.952	16.4	3.128	74.547	17.1
2H2022	2.187	56.251	12.0	2.992	76.944	16.4	3.129	77.676	17.1
1H2023	2.109	58.360	11.5	2.885	79.829	15.8	3.029	80.705	16.6
2H2023	2.101	60.461	11.5	2.874	82.703	15.7	3.032	83.737	16.6
1H2024	2.036	62.497	11.1	2.785	85.488	15.2	2.952	86.689	16.2
2H2024	2.017	64.514	11.0	2.760	88.248	15.1	2.938	89.627	16.1
1H2025	1.945	66.459	10.7	2.660	90.908	14.6	2.846	92.473	15.6
2H2025	1.937	68.396	10.6	2.650	93.558	14.5	2.850	95.323	15.6
1H2026	1.868	70.264	10.2	2.555	96.113	14.0	2.761	98.084	15.1
2H2026	1.861	72.125	10.2	2.545	98.658	13.9	2.765	100.849	15.1
1H2027	1.794	73.919	9.8	2.454	101.112	13.4	2.679	103.528	14.7
2H2027	1.787	75.706	9.8	2.444	103.556	13.4	2.684	106.212	14.7
1H2028	1.732	77.438	9.5	2.369	105.925	13.0	2.616	108.828	14.3
2H2028	1.716	79.154	9.4	2.347	108.272	12.9	2.606	111.434	14.3

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	1.654	80.808	9.1	2.263	110.535	12.4	2.527	113.961	13.8
2H2029	1.648	82.456	9.0	2.254	112.789	12.3	2.532	116.493	13.9
1H2030	1.588	84.044	8.7	2.173	114.962	11.9	2.455	118.948	13.4
2H2030	1.583	85.627	8.7	2.165	117.127	11.9	2.461	121.409	13.5
1H2031	1.526	87.153	8.4	2.087	119.214	11.4	2.387	123.796	13.1
2H2031	1.520	88.673	8.3	2.079	121.293	11.4	2.393	126.189	13.1
1H2032	1.473	90.146	8.1	2.015	123.308	11.0	2.334	128.523	12.8
2H2032	1.459	91.605	8.0	1.996	125.304	10.9	2.327	130.850	12.7
1H2033	1.407	93.012	7.7	1.924	127.228	10.5	2.258	133.108	12.4
2H2033	1.402	94.414	7.7	1.917	129.145	10.5	2.264	135.372	12.4
1H2034	1.351	95.765	7.4	1.848	130.993	10.1	2.198	137.570	12.0
2H2034	1.346	97.111	7.4	1.841	132.834	10.1	2.204	139.774	12.1
1H2035	1.298	98.409	7.1	1.775	134.609	9.7	2.139	141.913	11.7
2H2035	1.293	99.702	7.1	1.768	136.377	9.7	2.146	144.059	11.8
1H2036	1.253	100.955	6.9	1.714	138.091	9.4	2.095	146.154	11.5
2H2036	1.241	102.196	6.8	1.698	139.789	9.3	2.091	148.245	11.4
1H2037	1.197	103.393	6.6	1.637	141.426	9.0	2.030	150.275	11.1
2H2037	1.192	104.585	6.5	1.631	143.057	8.9	2.037	152.312	11.2
1H2038	1.149	105.734	6.3	1.572	144.629	8.6	1.978	154.290	10.8
2H2038	1.145	106.879	6.3	1.566	146.195	8.6	1.986	156.276	10.9
1H2039	1.104	107.983	6.0	1.510	147.705	8.3	1.929	158.205	10.6
2H2039	1.099	109.082	6.0	1.504	149.209	8.2	1.936	160.141	10.6
1H2040	1.066	110.148	5.8	1.458	150.667	8.0	1.891	162.032	10.4
2H2040	1.056	111.204	5.8	1.444	152.111	7.9	1.888	163.920	10.3
1H2041	1.018	112.222	5.6	1.392	153.503	7.6	1.835	165.755	10.0
2H2041	1.014	113.236	5.6	1.387	154.890	7.6	1.842	167.597	10.1
1H2042	0.977	114.213	5.3	1.337	156.227	7.3	1.790	169.387	9.8
2H2042	0.974	115.187	5.3	1.332	157.559	7.3	1.798	171.185	9.8
1H2043	0.939	116.126	5.1	1.284	158.843	7.0	1.748	172.933	9.6
2H2043	0.935	117.061	5.1	1.279	160.122	7.0	1.756	174.689	9.6
1H2044	0.906	117.967	5.0	1.240	161.362	6.8	1.716	176.405	9.4
2H2044	0.898	118.865	4.9	1.228	162.590	6.7	1.714	178.119	9.4
1H2045	0.866	119.731	4.7	1.184	163.774	6.5	1.667	179.786	9.1
2H2045	0.862	120.593	4.7	1.180	164.954	6.5	1.674	181.460	9.2
1H2046									

Horndean

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	29.017	29.017	158.9	30.797	30.797	168.6	30.856	30.856	169.0
1H2013	26.245	55.262	143.7	28.692	59.489	157.1	28.873	59.729	158.1
2H2013	24.532	79.794	134.3	27.625	87.114	151.3	27.941	87.670	153.0
1H2014	22.189	101.983	121.5	25.737	112.851	140.9	26.184	113.854	143.4
2H2014	20.741	122.724	113.6	24.780	137.631	135.7	25.374	139.228	138.9
1H2015	18.760	141.484	102.7	23.086	160.717	126.4	23.811	163.039	130.4
2H2015	17.535	159.019	96.0	22.227	182.944	121.7	23.106	186.145	126.5
1H2016	15.944	174.963	87.3	20.820	203.764	114.0	21.828	207.973	119.5
2H2016	14.818	189.781	81.1	19.932	223.696	109.1	21.089	229.062	115.5
1H2017	13.403	203.184	73.4	18.570	242.266	101.7	19.840	248.902	108.6
2H2017	12.528	215.712	68.6	17.879	260.145	97.9	19.300	268.202	105.7
1H2018	11.332	227.044	62.1	16.657	276.802	91.2	18.177	286.379	99.5
2H2018	10.592	237.636	58.0	16.038	292.840	87.8	17.703	304.082	96.9
1H2019	9.580	247.216	52.5	14.942	307.782	81.8	16.692	320.774	91.4
2H2019	8.955	256.171	49.0	14.386	322.168	78.8	16.273	337.047	89.1
1H2020	8.143	264.314	44.6	13.475	335.643	73.8	15.443	352.490	84.6
2H2020	7.568	271.882	41.4	12.900	348.543	70.6	14.987	367.477	82.1
1H2021	6.845	278.727	37.5	12.019	360.562	65.8	14.160	381.637	77.5
2H2021	6.398	285.125	35.0	11.572	372.134	63.4	13.833	395.470	75.7
1H2022	5.787	290.912	31.7	10.781	382.915	59.0	13.082	408.552	71.6
2H2022	5.409	296.321	29.6	10.380	393.295	56.8	12.792	421.344	70.0
1H2023	4.893	301.214	26.8	9.671	402.966	53.0	12.109	433.453	66.3
2H2023	4.573	305.787	25.0	9.311	412.277	51.0	11.850	445.303	64.9
1H2024	4.158	309.945	22.8	8.721	420.998	47.8	11.288	456.591	61.8
2H2024	3.865	313.810	21.2	8.349	429.347	45.7	10.995	467.586	60.2
1H2025	3.496	317.306	19.1	7.779	437.126	42.6	10.425	478.011	57.1
2H2025	3.267	320.573	17.9	7.489	444.615	41.0	10.220	488.231	56.0
1H2026	2.955	323.528	16.2	6.978	451.593	38.2	9.698	497.929	53.1
2H2026	2.762	326.290	15.1	6.718	458.311	36.8	9.514	507.443	52.1
1H2027				6.259	464.570	34.3	9.035	516.478	49.5
2H2027				6.026	470.596	33.0	8.871	525.349	48.6
1H2028				5.645	476.241	30.9	8.476	533.825	46.4
2H2028				5.404	481.645	29.6	8.281	542.106	45.3

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029				5.035	486.680	27.6	7.876	549.982	43.1
2H2029				4.847	491.527	26.5	7.743	557.725	42.4
1H2030				4.516	496.043	24.7	7.369	565.094	40.4
2H2030				4.348	500.391	23.8	7.250	572.344	39.7
1H2031				4.051	504.442	22.2	6.904	579.248	37.8
2H2031				3.900	508.342	21.4	6.796	586.044	37.2
1H2032				3.653	511.995	20.0	6.511	592.555	35.7
2H2032				3.498	515.493	19.2	6.378	598.933	34.9
1H2033				3.258	518.751	17.8	6.081	605.014	33.3
2H2033				3.137	521.888	17.2	5.993	611.007	32.8
1H2034				2.923	524.811	16.0	5.717	616.724	31.3
2H2034				2.814	527.625	15.4	5.638	622.362	30.9
1H2035				2.622	530.247	14.4	5.382	627.744	29.5
2H2035				2.524	532.771	13.8	5.310	633.054	29.1
1H2036				2.364	535.135	12.9	5.099	638.153	27.9
2H2036				2.264	537.399	12.4	5.006	643.159	27.4
1H2037				2.109	539.508	11.5	4.783	647.942	26.2
2H2037				2.031	541.539	11.1	4.724	652.666	25.9
1H2038				1.892	543.431	10.4	4.516	657.182	24.7
2H2038				1.821	545.252	10.0	4.463	661.645	24.4
1H2039				1.697	546.949	9.3	4.269	665.914	23.4
2H2039				1.634	548.583	8.9	4.220	670.134	23.1
1H2040				1.530	550.113	8.4	4.061	674.195	22.2
2H2040				1.465	551.578	8.0	3.994	678.189	21.9
1H2041				1.365	552.943	7.5	3.824	682.013	20.9
2H2041				1.314	554.257	7.2	3.784	685.797	20.7
1H2042				1.224	555.481	6.7	3.624	689.421	19.8
2H2042				1.179	556.660	6.5	3.588	693.009	19.6
1H2043							3.437	696.446	18.8
2H2043							3.404	699.850	18.6
1H2044							3.281	703.131	18.0
2H2044							3.233	706.364	17.7
1H2045							3.100	709.464	17.0
2H2045							3.073	712.537	16.8
1H2046							2.948	715.485	16.1

Source: Senergy analysis

Table 2.20

Palmers Wood

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	9.606	9.606	52.6	12.167	12.167	66.6	12.203	12.203	66.8
1H2013	8.513	18.119	46.6	10.888	23.055	59.6	11.000	23.203	60.2
2H2013	7.797	25.916	42.7	10.068	33.123	55.1	10.271	33.474	56.2
1H2014	6.910	32.826	37.8	9.009	42.132	49.3	9.299	42.773	50.9
2H2014	6.329	39.155	34.7	8.331	50.463	45.6	8.718	51.491	47.7
1H2015				7.455	57.918	40.8	7.924	59.415	43.4
2H2015				6.894	64.812	37.7	7.457	66.872	40.8
1H2016				6.201	71.013	34.0	6.839	73.711	37.4
2H2016				5.702	76.715	31.2	6.421	80.132	35.2
1H2017				5.102	81.817	27.9	5.876	86.008	32.2
2H2017				4.718	86.535	25.8	5.566	91.574	30.5
1H2018				4.222	90.757	23.1	5.110	96.684	28.0
2H2018				3.904	94.661	21.4	4.854	101.538	26.6
1H2019				3.493	98.154	19.1	4.468	106.006	24.5
2H2019				3.231	101.385	17.7	4.256	110.262	23.3
1H2020							3.948	114.210	21.6
2H2020							3.749	117.959	20.5
1H2021							3.468	121.427	19.0
2H2021							3.319	124.746	18.2
1H2022							3.076	127.822	16.8
2H2022							2.950	130.772	16.2
1H2023							2.741	133.513	15.0
2H2023							2.634	136.147	14.4
1H2024							2.464	138.611	13.5
2H2024							2.359	140.970	12.9
1H2025							2.199	143.169	12.0
2H2025							2.121	145.290	11.6
1H2026							1.981	147.271	10.8
2H2026							1.913	149.184	10.5
1H2027							1.790	150.974	9.8
2H2027							1.731	152.705	9.5
1H2028							1.631	154.336	8.9
2H2028							1.571	155.907	8.6

								1	
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029							1.474	157.381	8.1
2H2029							1.429	158.810	7.8
1H2030							1.343	160.153	7.4
2H2030							1.304	161.457	7.1
1H2031							1.227	162.684	6.7
2H2031							1.193	163.877	6.5
1H2032							1.129	165.006	6.2
2H2032							1.093	166.099	6.0
1H2033							1.031	167.130	5.6
2H2033							1.005	168.135	5.5
1H2034							0.948	169.083	5.2
2H2034							0.925	170.008	5.1
1H2035							0.874	170.882	4.8
2H2035							0.853	171.735	4.7
1H2036							0.811	172.546	4.4
2H2036							0.789	173.335	4.3
1H2037							0.746	174.081	4.1
2H2037							0.730	174.811	4.0
1H2038							0.692	175.503	3.8
2H2038							0.677	176.180	3.7
1H2039							0.642	176.822	3.5
2H2039							0.629	177.451	3.4
1H2040							0.600	178.051	3.3
2H2040							0.586	178.637	3.2
1H2041							0.556	179.193	3.0
2H2041							0.546	179.739	3.0
1H2042							0.519	180.258	2.8
2H2042							0.509	180.767	2.8
1H2043							0.484	181.251	2.7
2H2043							0.476	181.727	2.6
1H2044							0.456	182.183	2.5
2H2044							0.446	182.629	2.4
1H2045							0.424	183.053	2.3
2H2045							0.418	183.471	2.3
1H2046									

Storrington

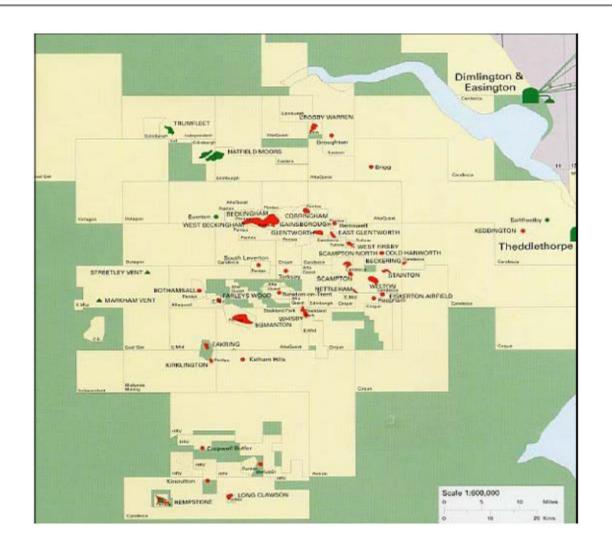
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	4.010	4.010	22.0	7.365	7.365	40.3	7.676	7.676	42.0
1H2013	3.283	7.293	18.0	6.042	13.407	33.1	6.870	14.546	37.6
2H2013	2.777	10.070	15.2	5.123	18.530	28.1	6.382	20.928	34.9
1H2014				4.202	22.732	23.0	5.758	26.686	31.5
2H2014				3.563	26.295	19.5	5.389	32.075	29.5
1H2015							4.896	36.971	26.8
2H2015							4.611	41.582	25.2
1H2016							4.237	45.819	23.2
2H2016							3.989	49.808	21.8
1H2017							3.664	53.472	20.1
2H2017							3.486	56.958	19.1
1H2018							3.216	60.174	17.6
2H2018							3.073	63.247	16.8
1H2019							2.846	66.093	15.6
2H2019							2.728	68.821	14.9
1H2020							2.549	71.370	14.0
2H2020							2.438	73.808	13.3
1H2021							2.273	76.081	12.4
2H2021							2.193	78.274	12.0
1H2022							2.050	80.324	11.2
2H2022							1.983	82.307	10.9
1H2023							1.858	84.165	10.2
2H2023							1.801	85.966	9.9
1H2024							1.701	87.667	9.3
2H2024							1.643	89.310	9.0
1H2025							1.546	90.856	8.5
2H2025							1.505	92.361	8.2
1H2026							1.419	93.780	7.8
2H2026							1.384	95.164	7.6
1H2027							1.308	96.472	7.2
2H2027							1.277	97.749	7.0
1H2028							1.215	98.964	6.7
2H2028							1.182	100.146	6.5

		1						1	
	1P	1P	1P	2P	2 P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029							1.120	101.266	6.1
2H2029							1.097	102.363	6.0
1H2030							1.041	103.404	5.7
2H2030							1.021	104.425	5.6
1H2031							0.970	105.395	5.3
2H2031							0.953	106.348	5.2
1H2032							0.911	107.259	5.0
2H2032							0.891	108.150	4.9
1H2033							0.848	108.998	4.6
2H2033							0.835	109.833	4.6
1H2034							0.796	110.629	4.4
2H2034							0.784	111.413	4.3
1H2035							0.748	112.161	4.1
2H2035							0.738	112.899	4.0
1H2036							0.708	113.607	3.9
2H2036							0.695	114.302	3.8
1H2037							0.664	114.966	3.6
2H2037							0.657	115.623	3.6
1H2038							0.628	116.251	3.4
2H2038							0.621	116.872	3.4
1H2039							0.594	117.466	3.3
2H2039							0.588	118.054	3.2
1H2040							0.566	118.620	3.1
2H2O40							0.558	119.178	3.1
1H2041							0.535	119.713	2.9
2H2O41							0.530	120.243	2.9
1H2O42							0.508	120.751	2.8
2H2042							0.504	121.255	2.8
1H2043							0.484	121.739	2.7
2H2043							0.480	122.219	2.6
1H2044							0.463	122.682	2.5
2H2044							0.457	123.139	2.5
1H2045							0.439	123.578	2.4
2H2O45							0.437	124.015	2.4
1H2046									

Stockbridge

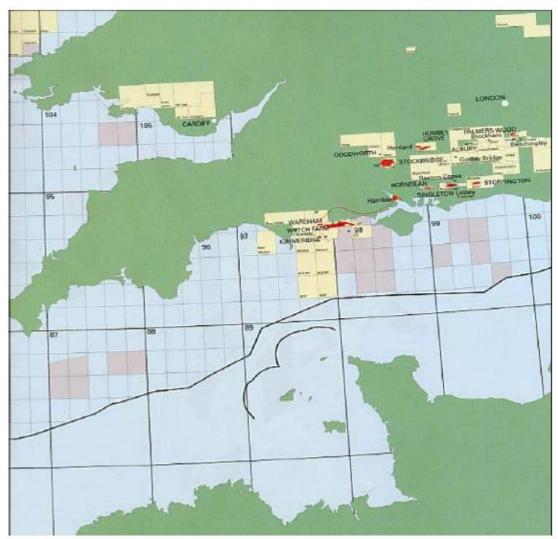
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
2H2012	82.532	82.532	451.9	86.854	86.854	475.6	86.770	86.770	475.1
1H2013	78.552	161.084	430.1	83.261	170.115	455.9	83.040	169.810	454.7
2H2013	77.264	238.348	423.1	82.485	252.600	451.7	82.158	251.968	449.9
1H2014	73.539	311.887	402.7	79.074	331.674	433.0	78.685	330.653	430.9
2H2014	72.332	384.219	396.1	78.336	410.010	428.9	77.905	408.558	426.6
1H2015	68.845	453.064	377.0	75.096	485.106	411.2	74.664	483.222	408.8
2H2015	67.716	520.780	370.8	74.396	559.502	407.4	73.974	557.196	405.1
1H2016	64.801	585.581	354.8	71.708	631.210	392.7	71.330	628.526	390.6
2H2016	63.382	648.963	347.1	70.644	701.854	386.8	70.324	698.850	385.1
1H2017	60.326	709.289	330.3	67.722	769.576	370.8	67.485	766.335	369.5
2H2017	59.337	768.626	324.9	67.091	836.667	367.4	66.946	833.281	366.6
1H2018	56.476	825.102	309.2	64.316	900.983	352.2	64.282	897.563	352.0
2H2018	55.549	880.651	304.2	63.716	964.699	348.9	63.805	961.368	349.4
1H2019	52.871	933.522	289.5	61.081	1025.780	334.5	61.301	1022.669	335.7
2H2019	52.004	985.526	284.8	60.511	1086.291	331.3	60.881	1083.550	333.4
1H2020	49.765	1035.291	272.5	58.325	1144.616	319.4	58.843	1142.393	322.2
2H2020	48.676	1083.967	266.5	57.460	1202.076	314.6	58.146	1200.539	318.4
1H2021	46.329	1130.296	253.7	55.083	1257.159	301.6	55.924	1256.463	306.2
2H2021	45.569	1175.865	249.5	54.569	1311.728	298.8	55.598	1312.061	304.4
1H2022	43.372	1219.237	237.5	52.312	1364.040	286.4	53.499	1365.560	292.9
2H2022	42.660	1261.897	233.6	51.825	1415.865	283.8	53.214	1418.774	291.4
1H2023	40.604	1302.501	222.3	49.681	1465.546	272.0	51.230	1470.004	280.5
2H2023	39.938	1342.439	218.7	49.218	1514.764	269.5	50.980	1520.984	279.2
1H2024	38.219	1380.658	209.3	47.439	1562.203	259.8	49.370	1570.354	270.3
2H2024	37.382	1418.040	204.7	46.736	1608.939	255.9	48.878	1619.232	267.6
1H2025	35.579	1453.619	194.8	44.803	1653.742	245.3	47.097	1666.329	257.9
2H2025	34.996	1488.615	191.6	44.385	1698.127	243.0	46.909	1713.238	256.9
1H2026	33.308	1521.923	182.4	42.549	1740.676	233.0	45.219	1758.457	247.6
2H2026	32.762	1554.685	179.4	42.152	1782.828	230.8	45.056	1803.513	246.7
1H2027	31.182	1585.867	170.7	40.409	1823.237	221.3	43.451	1846.964	237.9
2H2027	30.671	1616.538	167.9	40.032	1863.269	219.2	43.311	1890.275	237.2
1H2028	29.351	1645.889	160.7	38.586	1901.855	211.3	42.013	1932.288	230.1
2H2028	28.708	1674.597	157.2	38.013	1939.868	208.1	41.661	1973.949	228.1

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd	MBBLS	MBBLS	bopd
1H2029	27.324	1701.921	149.6	36.441	1976.309	199.5	40.207	2014.156	220.2
2H2029	26.876	1728.797	147.2	36.101	2012.410	197.7	40.108	2054.264	219.6
1H2030	25.580	1754.377	140.1	34.608	2047.018	189.5	38.722	2092.986	212.0
2H2030	25.160	1779.537	137.8	34.285	2081.303	187.7	38.640	2131.626	211.6
1H2031	23.947	1803.484	131.1	32.867	2114.170	180.0	37.318	2168.944	204.3
2H2031	23.555	1827.039	129.0	32.561	2146.731	178.3	37.251	2206.195	204.0
1H2032	22.541	1849.580	123.4	31.384	2178.115	171.8	36.185	2242.380	198.1
2H2032	22.047	1871.627	120.7	30.919	2209.034	169.3	35.932	2278.312	196.8
1H2033	20.984	1892.611	114.9	29.640	2238.674	162.3	34.725	2313.037	190.1
2H2033	20.640	1913.251	113.0	29.363	2268.037	160.8	34.686	2347.723	189.9
1H2034	19.645	1932.896	107.6	28.149	2296.186	154.1	33.531	2381.254	183.6
2H2034	19.323	1952.219	105.8	27.887	2324.073	152.7	33.503	2414.757	183.5
1H2035	18.391	1970.610	100.7	26.733	2350.806	146.4	32.397	2447.154	177.4
2H2035	18.089	1988.699	99.0	26.484	2377.290	145.0	32.380	2479.534	177.3
1H2036	17.311	2006.010	94.8	25.527	2402.817	139.8	31.491	2511.025	172.4
2H2036	16.932	2022.942	92.7	25.148	2427.965	137.7	31.309	2542.334	171.4
1H2037	16.115	2039.057	88.2	24.108	2452.073	132.0	30.293	2572.627	165.9
2H2037	15.851	2054.908	86.8	23.883	2475.956	130.8	30.293	2602.920	165.9
1H2038	15.087	2069.995	82.6	22.895	2498.851	125.4	29.318	2632.238	160.5
2H2038	14.839	2084.834	81.3	22.682	2521.533	124.2	29.326	2661.564	160.6
1H2039	14.124	2098.958	77.3	21.744	2543.277	119.1	28.389	2689.953	155.4
2H2039	13.892	2112.850	76.1	21.541	2564.818	118.0	28.405	2718.358	155.5
1H2040	13.294	2126.144	72.8	20.763	2585.581	113.7	27.655	2746.013	151.4
2H2040	13.003	2139.147	71.2	20.455	2606.036	112.0	27.524	2773.537	150.7
1H2041	12.376	2151.523	67.8	19.609	2625.645	107.4	26.658	2800.195	146.0
2H2041	12.173	2163.696	66.7	19.426	2645.071	106.4	26.685	2826.880	146.1
1H2042	11.586	2175.282	63.4	18.622	2663.693	102.0	25.852	2852.732	141.6
2H2042	11.396	2186.678	62.4	18.449	2682.142	101.0	25.884	2878.616	141.7
1H2043	10.847	2197.525	59.4	17.686	2699.828	96.8	25.082	2903.698	137.3
2H2043	10.669	2208.194	58.4	17.521	2717.349	95.9	25.119	2928.817	137.5
1H2044	10.210	2218.404	55.9	16.888	2734.237	92.5	24.479	2953.296	134.0
2H2044	9.986	2228.390	54.7	16.637	2750.874	91.1	24.385	2977.681	133.5
1H2045	9.504	2237.894	52.0	15.949	2766.823	87.3	23.640	3001.321	129.4
2H2045	9.349	2247.243	51.2	15.800	2782.623	86.5	23.685	3025.006	129.7
1H2046							22.966	3047.972	125.8

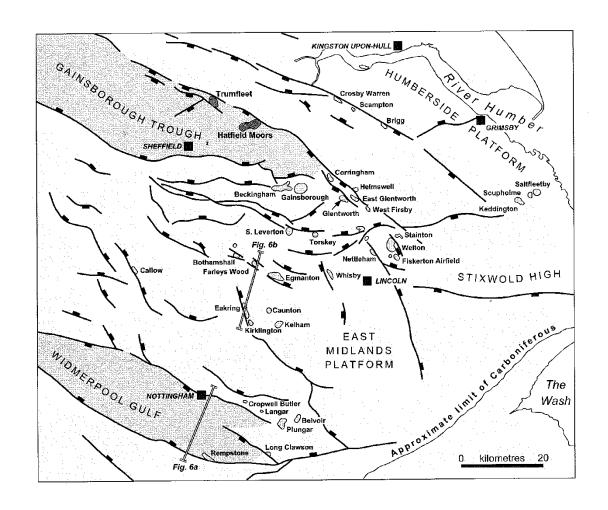


Gas Profiles Gainsborough/Beckingham

									1
	1P	1P	1P	2P	2P	2P	3P	3P	3P
	Bscf	Bscf	MMscf/d	Bscf	Bscf	MMscf/d	Bscf	Bscf	MMscf/d
2H2012	0.0731	0.146	0.4	0.0731	0.146	0.4	0.0731	0.146	0.4
1H2013	0.0731	0.219	0.4	0.0731	0.219	0.4	0.0731	0.219	0.4
2H2013	0.0731	0.292	0.4	0.0731	0.292	0.4	0.0731	0.292	0.4
1H2014	0.0731	0.365	0.4	0.0731	0.365	0.4	0.0731	0.365	0.4
2H2014	0.1096	0.475	0.6	0.1461	0.511	0.8	0.1461	0.511	0.8
1H2015	0.1096	0.584	0.6	0.1461	0.657	0.8	0.1461	0.657	0.8
2H2015	0.1096	0.694	0.6	0.1461	0.804	0.8	0.1461	0.804	0.8
1H2016	0.1096	0.804	0.6	0.1461	0.950	0.8	0.1461	0.950	0.8
2H2016	0.1096	0.913	0.6	0.1461	1.096	0.8	0.1461	1.096	0.8
1H2017	0.1096	1.023	0.6	0.1461	1.242	0.8	0.1461	1.242	0.8
2H2017	0.1096	1.132	0.6	0.1461	1.388	0.8	0.1461	1.388	0.8
1H2018	0.1096	1.242	0.6	0.1461	1.534	0.8	0.1461	1.534	0.8
2H2018	0.1096	1.351	0.6	0.1461	1.680	0.8	0.1461	1.680	0.8
1H2019	0.1096	1.461	0.6	0.1461	1.826	0.8	0.1461	1.826	0.8
2H2019	0.1096	1.571	0.6	0.1461	1.972	0.8	0.1461	1.972	0.8
1H2020	0.1096	1.680	0.6	0.1461	2.118	0.8	0.1461	2.118	0.8
2H2020	0.1096	1.790	0.6	0.1461	2.265	0.8	0.1461	2.265	0.8
1H2021	0.1096	1.899	0.6	0.1461	2.411	0.8	0.1461	2.411	0.8
2H2021	0.1096	2.009	0.6	0.1461	2.557	0.8	0.1461	2.557	0.8
1H2022	0.1096	2.118	0.6	0.1461	2.703	0.8	0.1461	2.703	0.8
2H2022	0.1096	2.228	0.6	0.1461	2.849	0.8	0.1461	2.849	0.8
1H2023	0.1096	2.338	0.6	0.1461	2.995	0.8	0.1461	2.995	0.8
2H2023	0.1096	2.447	0.6	0.1461	3.141	0.8	0.1461	3.141	0.8
1H2024	0.1096	2.557	0.6	0.1461	3.287	0.8	0.1461	3.287	0.8
2H2024	0.1096	2.666	0.6	0.1461	3.433	0.8	0.1461	3.433	0.8
1H2025	0.1096	2.776	0.6	0.1461	3.579	0.8	0.1461	3.579	0.8
2H2025	0.1096	2.885	0.6	0.1461	3.726	0.8	0.1461	3.726	0.8
1H2026	0.1096	2.995	0.6	0.1461	3.872	0.8	0.1461	3.872	0.8
2H2026	0.1096	3.105	0.6	0.1461	4.018	0.8	0.1461	4.018	0.8
1H2027	0.1096	3.214	0.6	0.1461	4.164	0.8	0.1461	4.164	0.8
2H2027	0.1096	3.324	0.6	0.1461	4.310	0.8	0.1461	4.310	0.8
1H2028	0.1096	3.433	0.6	0.1461	4.456	0.8	0.1461	4.456	0.8
2H2028	0.1096	3.543	0.6	0.1461	4.602	0.8	0.1461	4.602	0.8

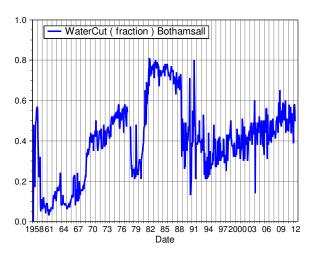

	1P	1P	1P	2P	2P	2P	3P	3P	3P
	Bscf	Bscf	MMscf/d	Bscf	Bscf	MMscf/d	Bscf	Bscf	MMscf/d
1H2029	0.1096	3.653	0.6	0.1461	4.748	0.8	0.1461	4.748	0.8
2H2029				0.1461	4.894	0.8	0.1461	4.894	0.8
1H2030				0.1461	5.040	0.8	0.1461	5.040	0.8
2H2030				0.1461	5.187	0.8	0.1461	5.187	0.8
1H2031				0.1461	5.333	0.8	0.1461	5.333	0.8
2H2031				0.1461	5.479	0.8	0.1461	5.479	0.8
1H2032				0.1461	5.625	0.8	0.1461	5.625	0.8
2H2032				0.1461	5.771	0.8	0.1461	5.771	0.8
1H2033				0.1461	5.917	0.8	0.1461	5.917	0.8
2H2033				0.1461	6.063	0.8	0.1461	6.063	0.8
1H2034							0.1461	6.209	0.8
2H2034							0.1461	6.355	0.8
1H2035							0.1461	6.501	0.8
2H2035							0.1461	6.648	0.8
1H2036							0.1461	6.794	0.8
2H2036							0.1461	6.940	0.8
1H2037							0.1461	7.086	0.8
2H2037							0.1461	7.232	0.8
1H2038									
2H2038									
1H2039									
2H2039									
1H2040									
2H2040									
1H2041									
2H2041									
1H2042									
2H2042									
1H2043									
2H2043									
1H2044									
2H2044									
1H2045									
2H2045									
1H2046									

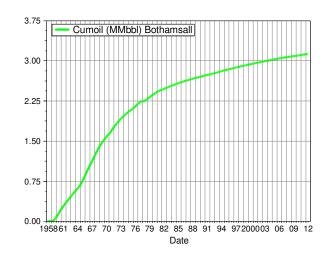
Location Map – East Midlands Assets

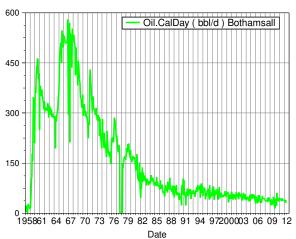

Source: IGas Energy plc

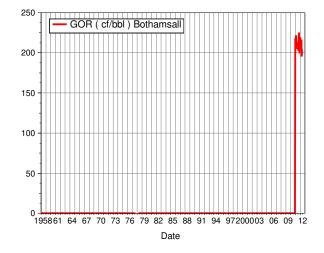
Location Map – Weald Basin Assets

Source: IGas Energy plc

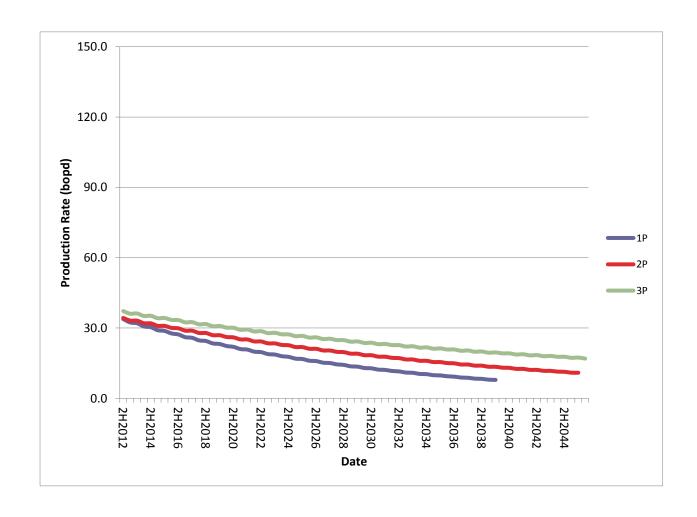

East Midland Fields

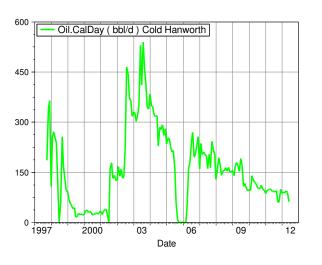


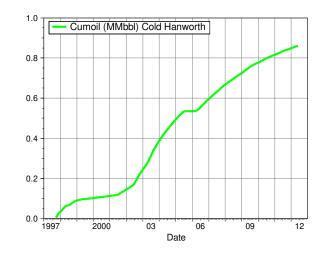

Source: Geological Society Memoir 20, Figure 18 on Page 30

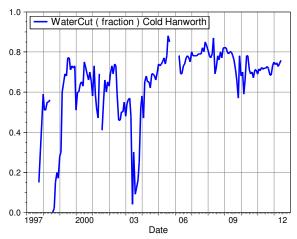


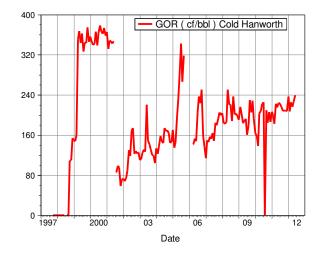
Bothamsall Production History



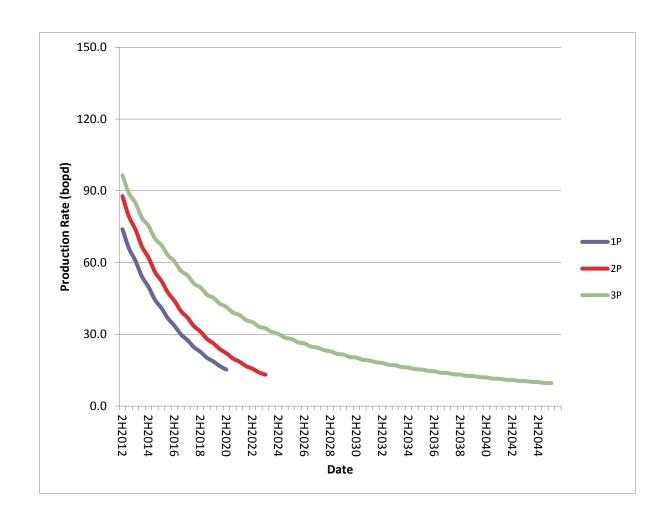


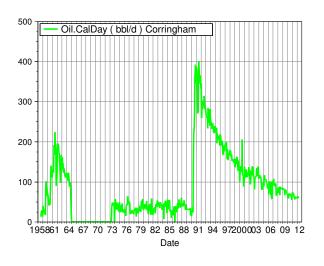

Bothamsall Forecast

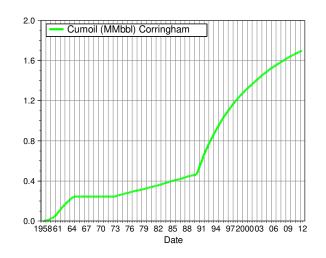


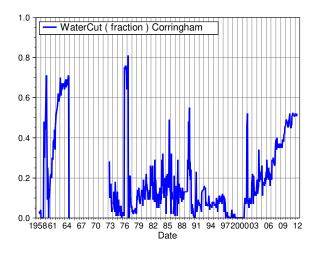


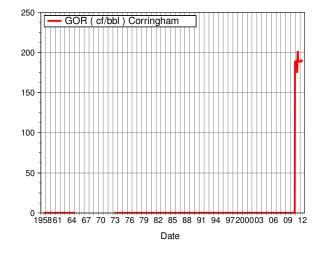
Cold Hanworth Production History



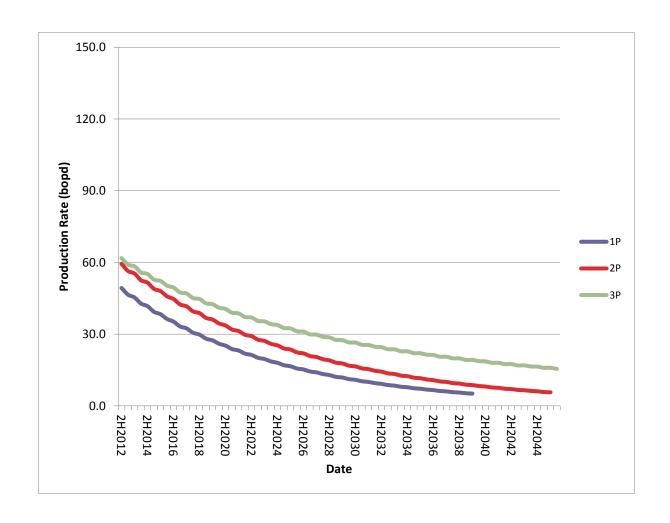


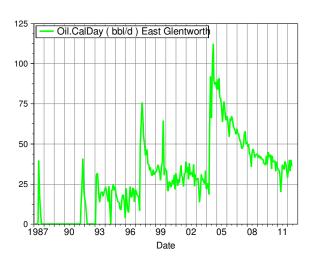

Cold Hanworth Forecast

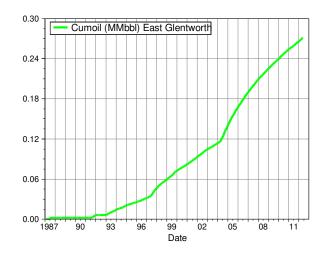


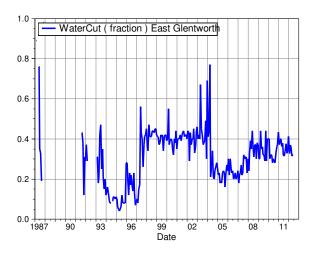


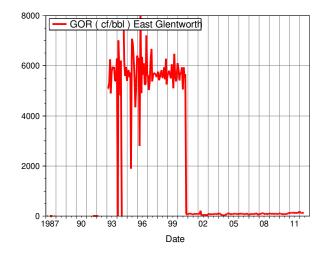
Corringham Production History



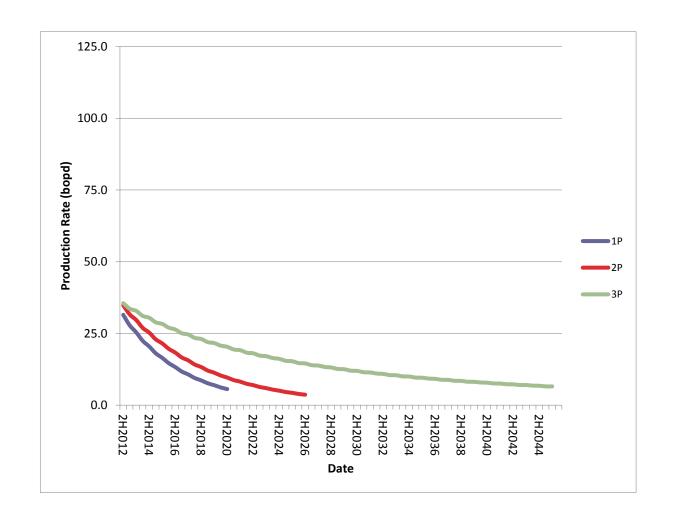


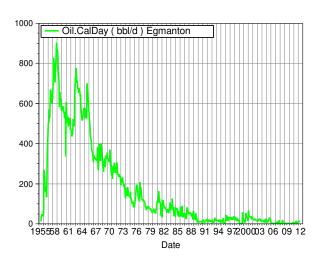

Corringham Forecast

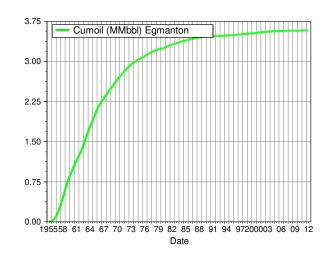


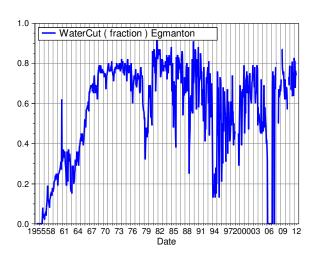


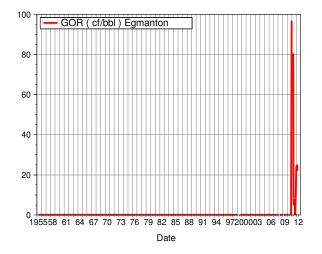
East Glentworth Production History



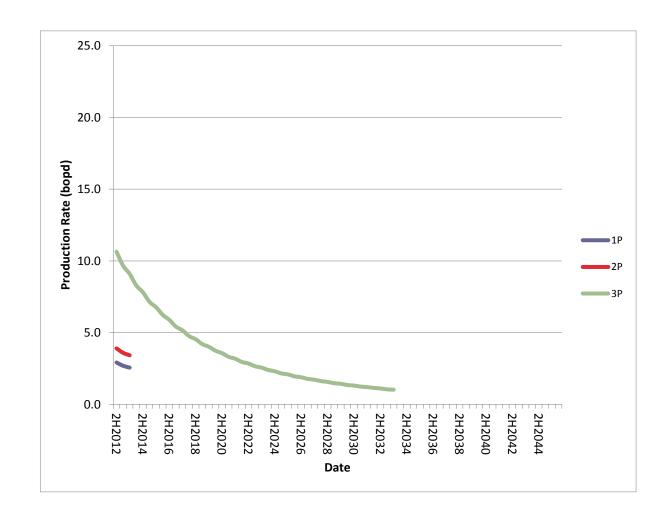


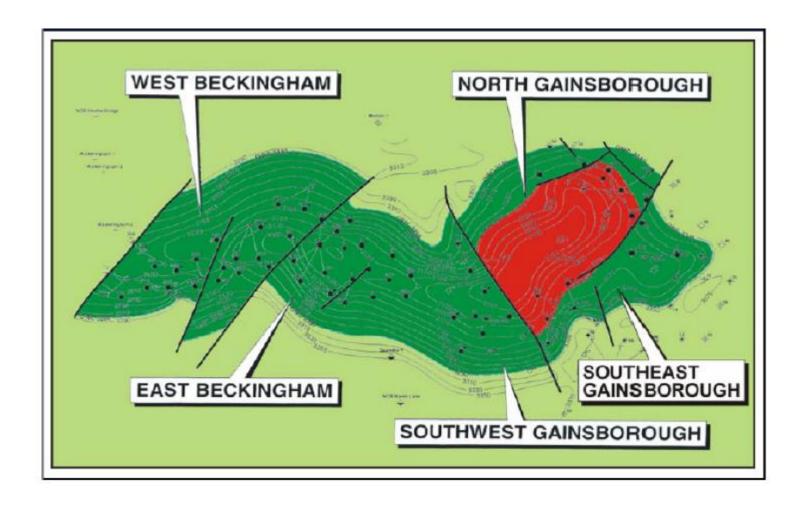

East Glentworth Forecast





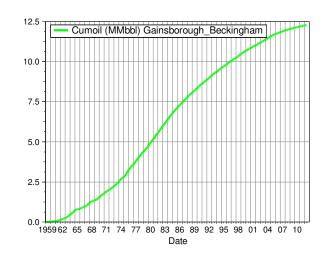
Egmanton Production History

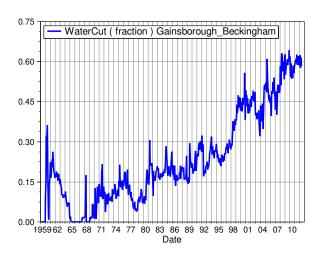


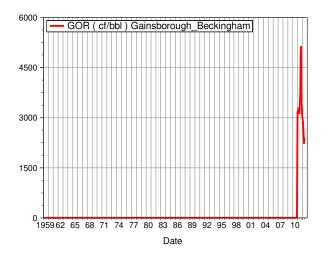


Egmanton Forecast

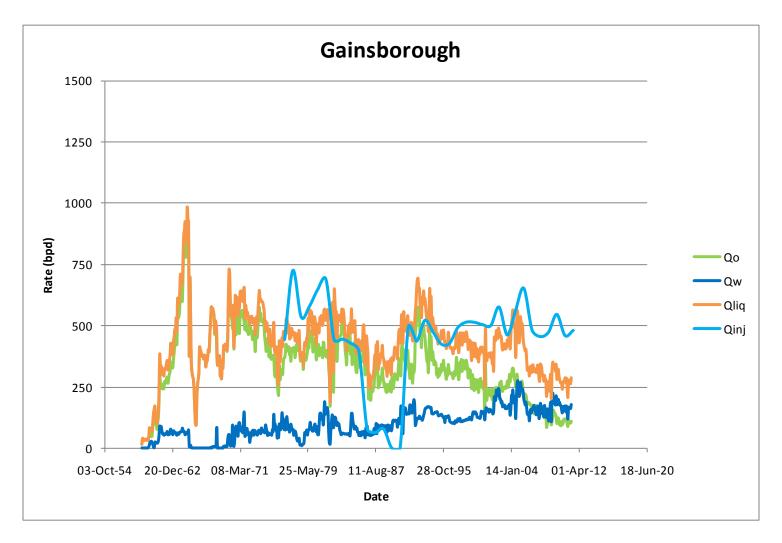

Gainsborough / Beckingham Top Eagle Sandstone Depth Map

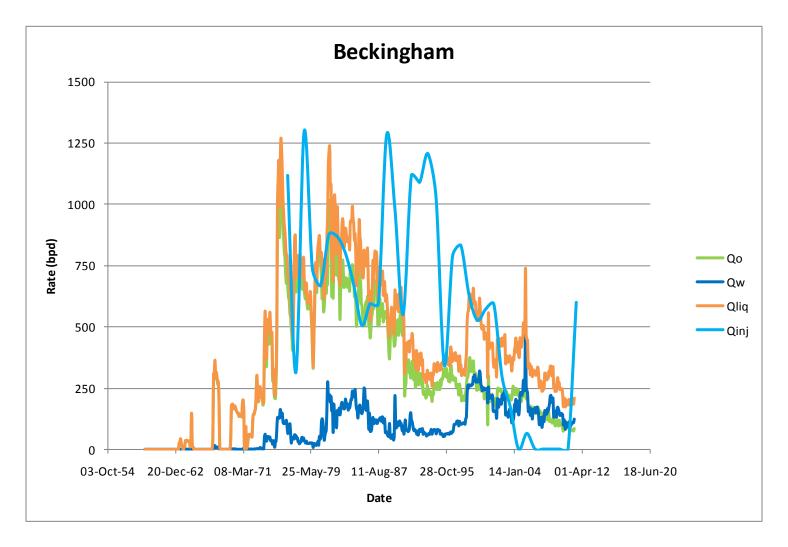



Source: RPS Reserves Report, Feb. 2008

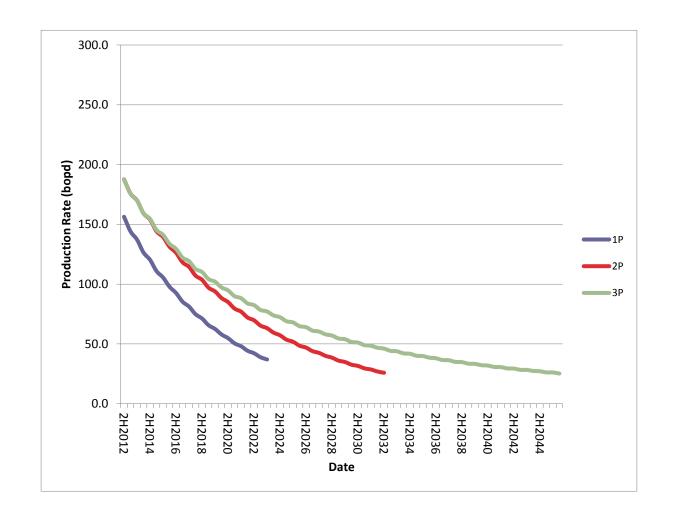


Gainsborough / Beckingham Production History

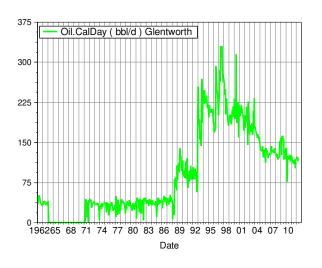


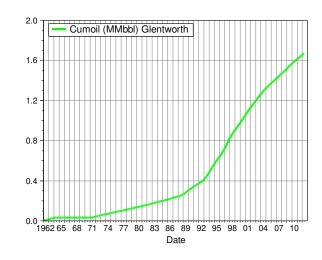


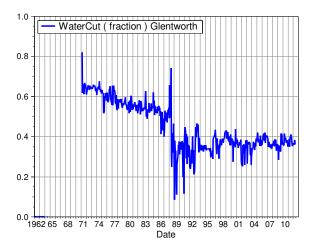
Gainsborough Production & Water Injection History

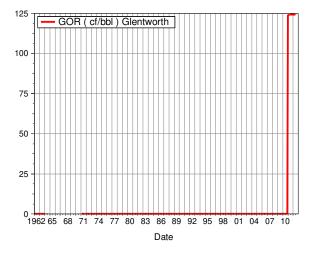

Source:

Beckingham Production & Water Injection History

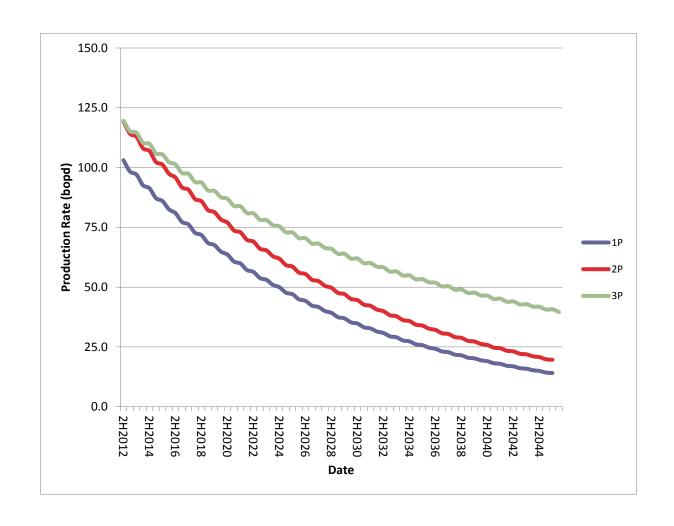

Source:

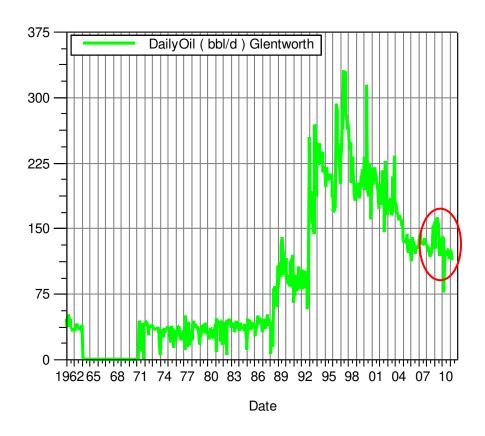

Gainsborough/Beckingham Forecast



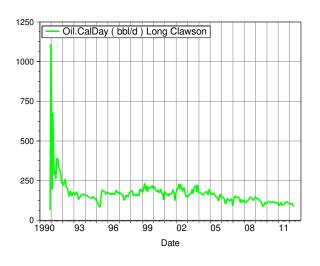


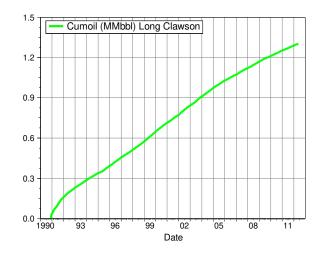
Glentworth Production History

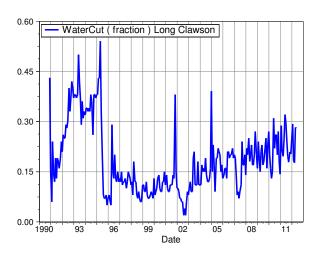


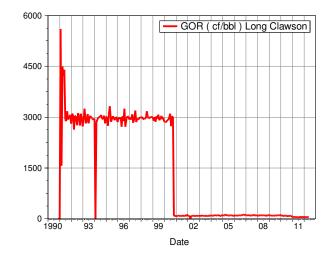


Glentworth Forecast

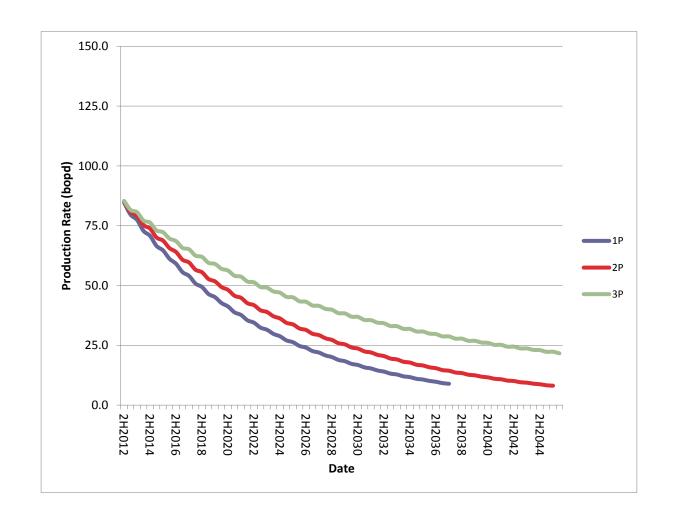

Glentworth - Increase in Production in 2009

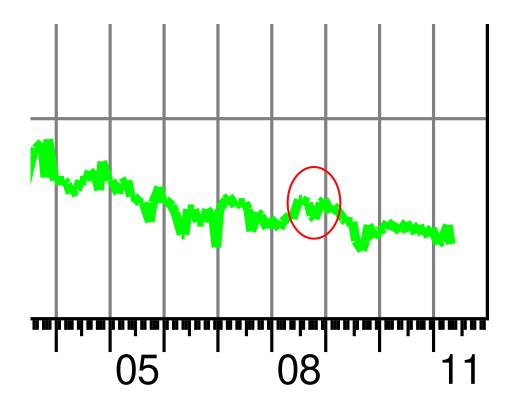



Source:

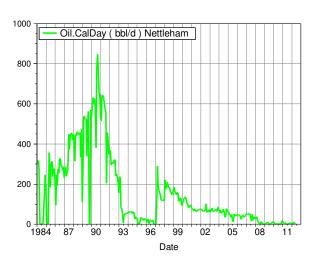


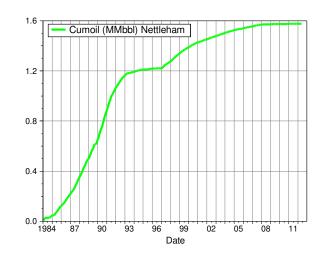
Long Clawson Production History

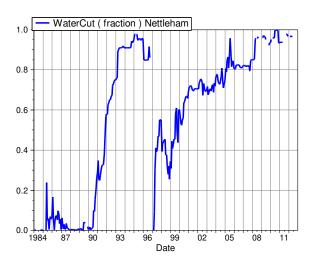


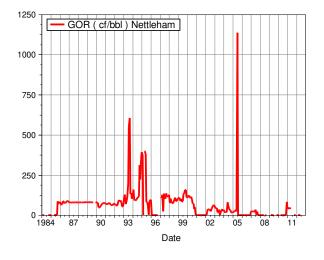


Long Clawson Forecast

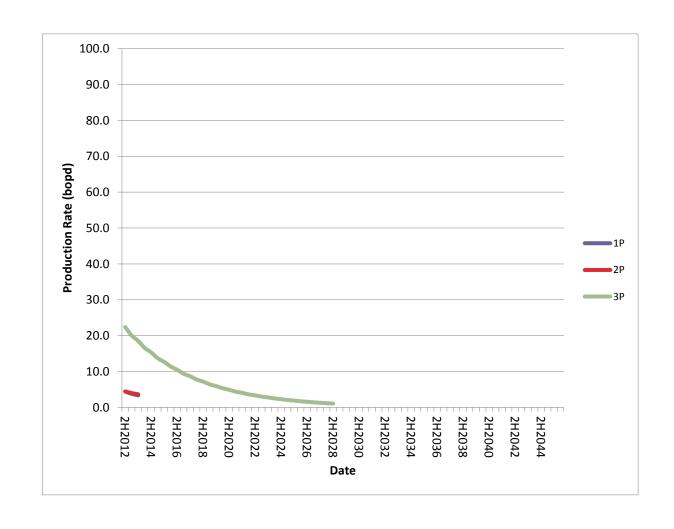

Long Clawson Increase in Production in 2008

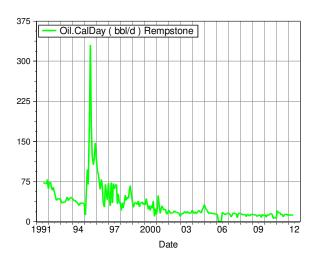


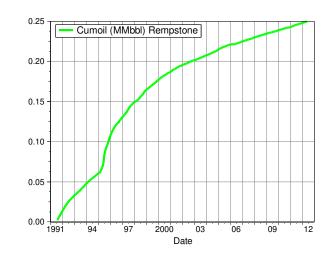

Source:

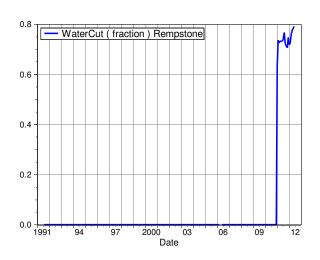


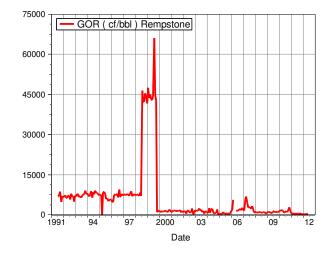
Nettleham Production History



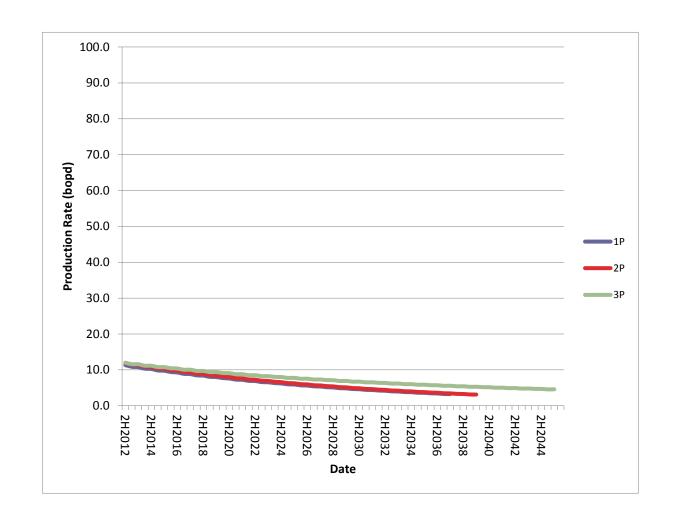

Source:

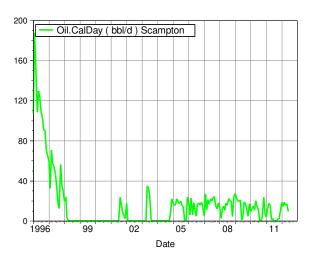

Nettleham Forecast

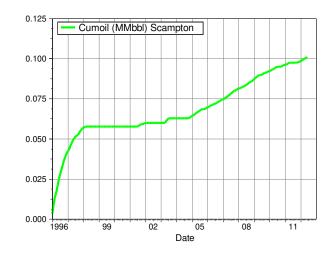


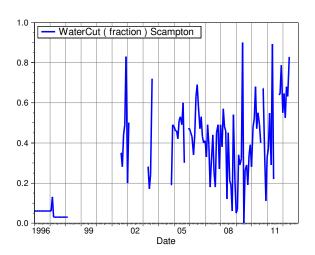


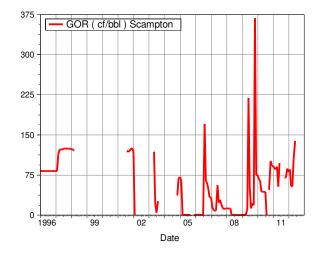
Rempstone Production History



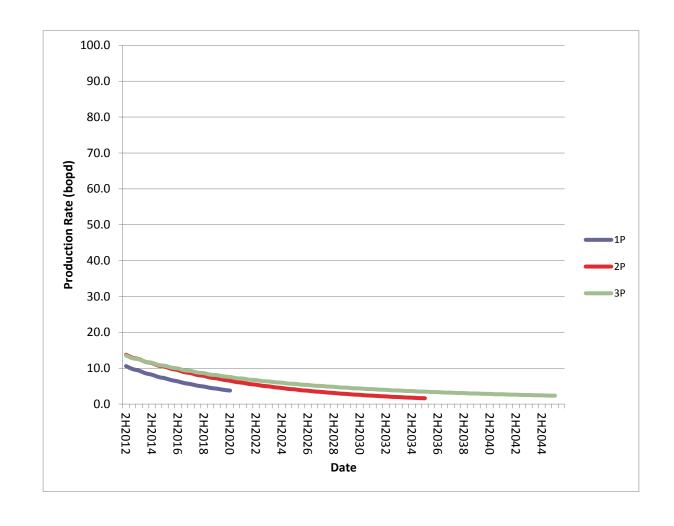


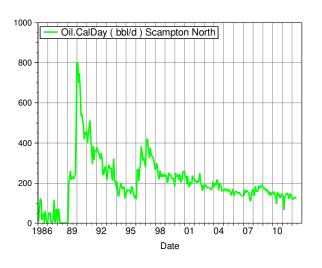

Rempstone Forecast

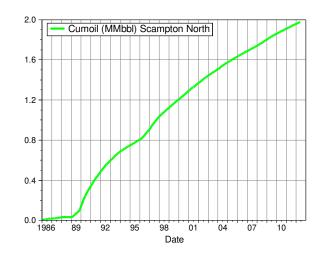


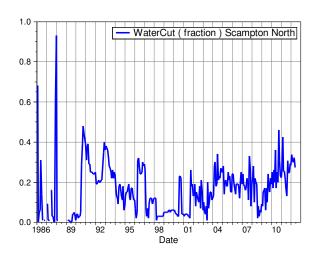


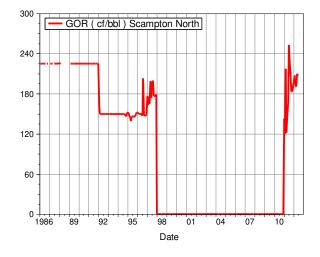
Scampton Production History



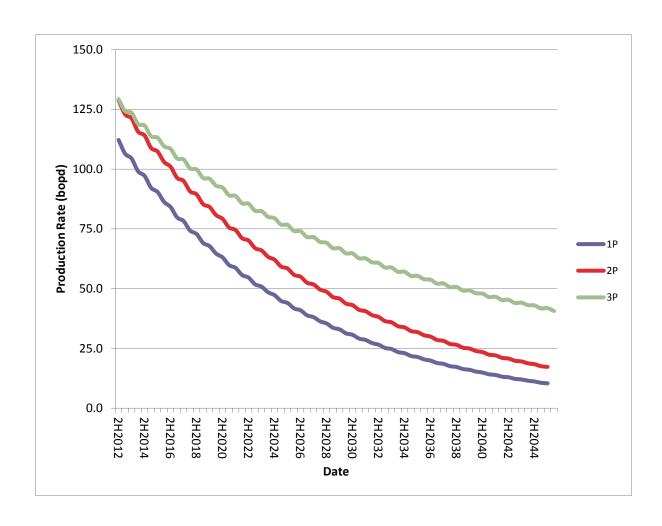


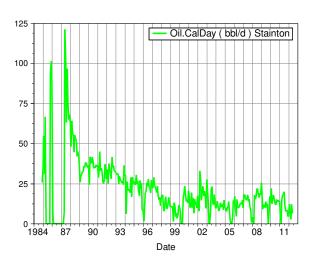

Scampton Forecast

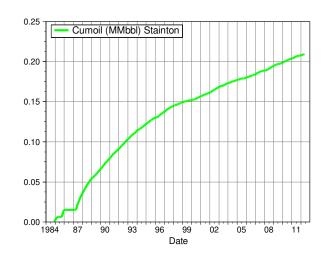


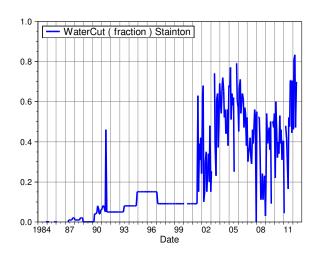


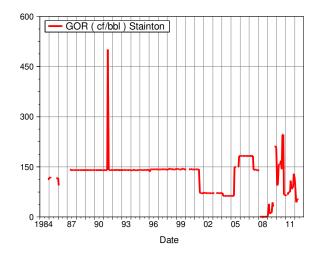
Scampton North Production History



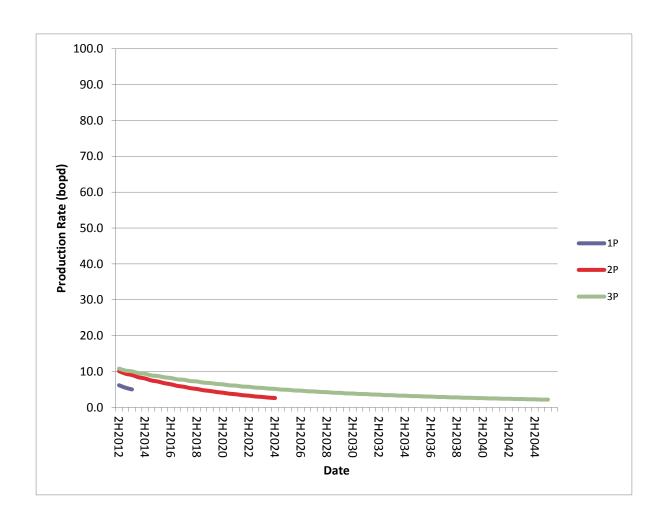


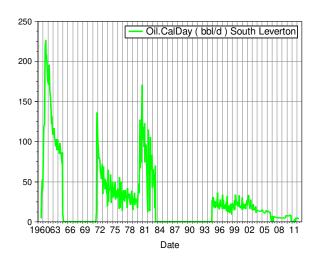

Scampton North Forecast

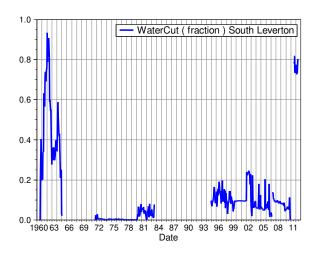


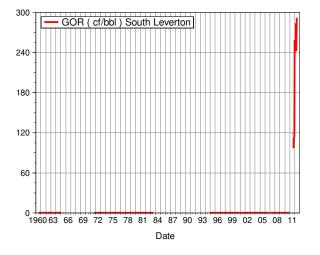


Stainton Production History

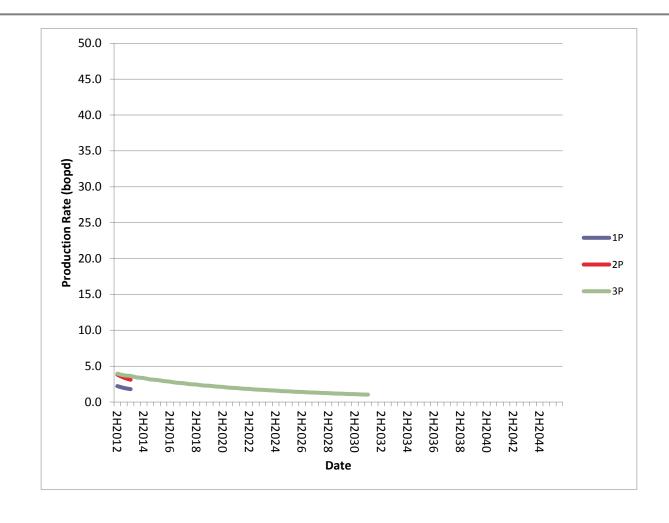


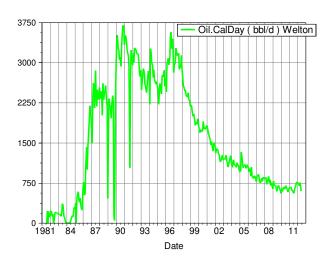

Stainton Forecast

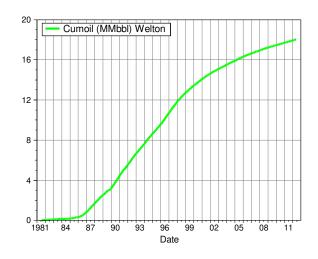


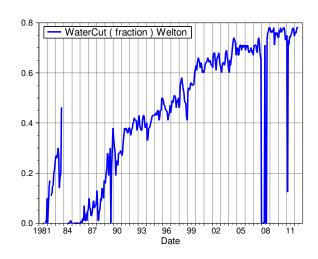


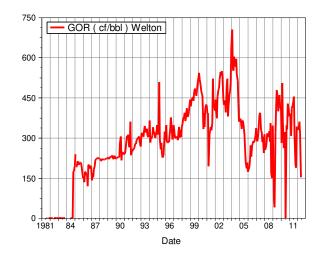
South Leverton Production History



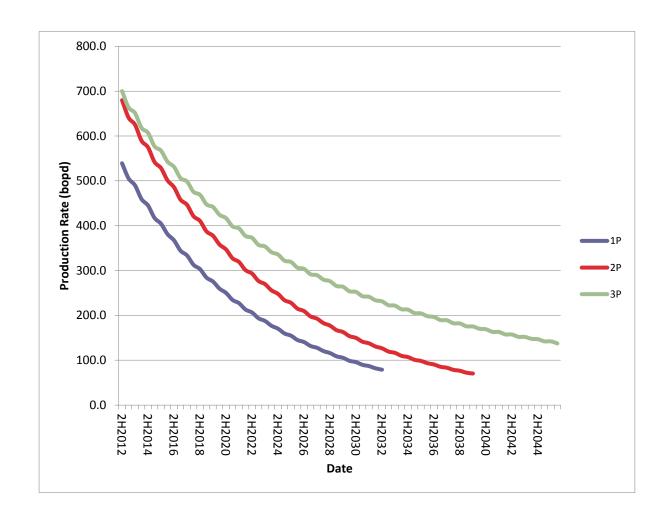


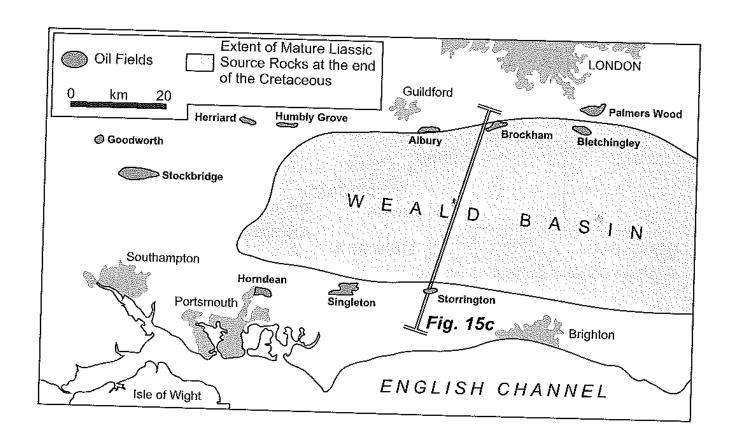

South Leverton Forecast



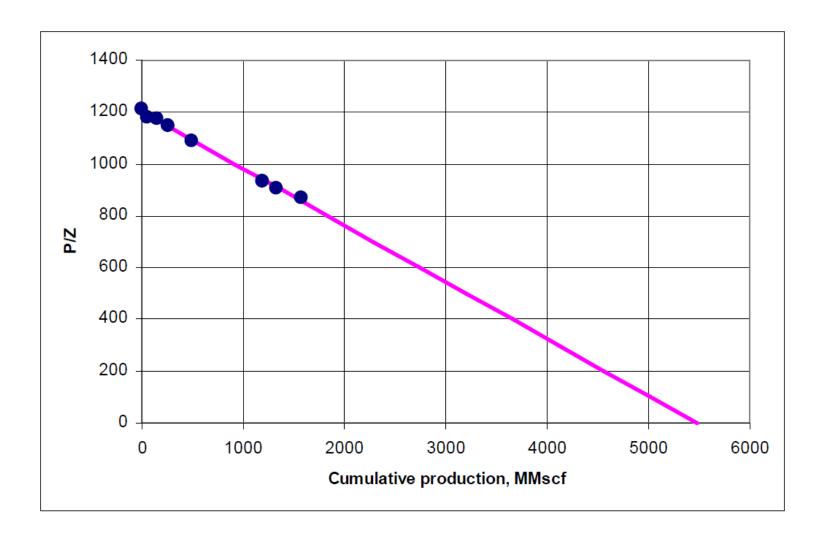


Welton Production History



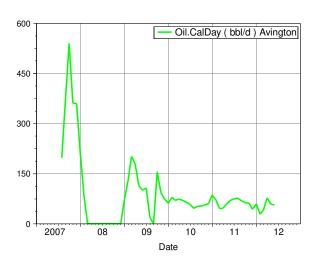


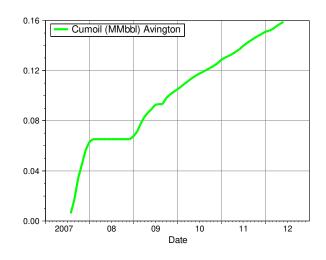
Welton Forecast

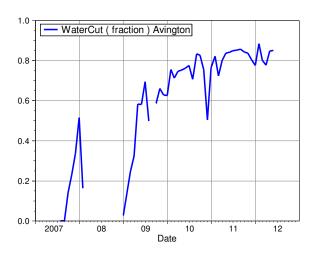


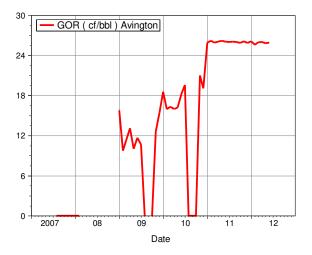
Weald Basin Fields

Source: Geological Society Memoir 20, Figure 34 on Page 41

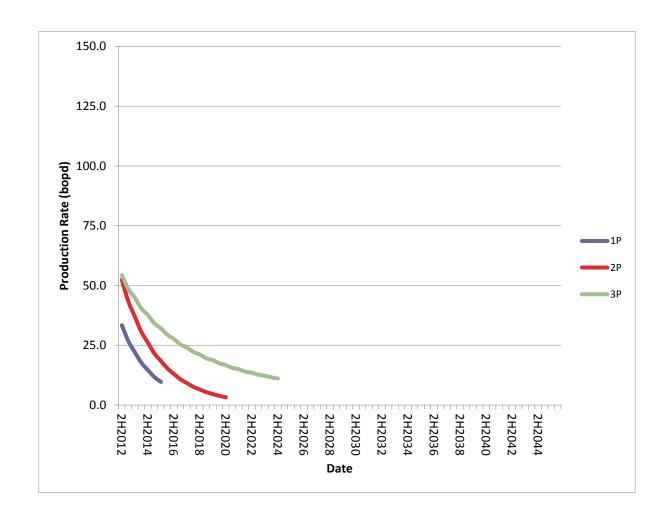

Albury Material Balance

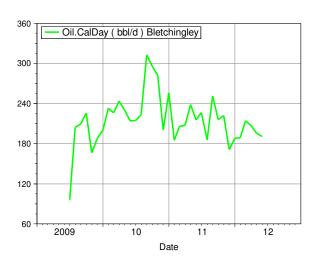


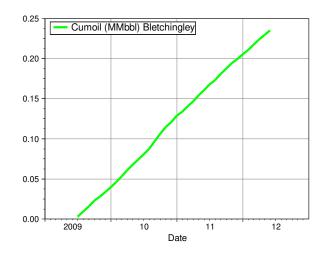

Source: Figure 64, RPS Reserves Report 2008

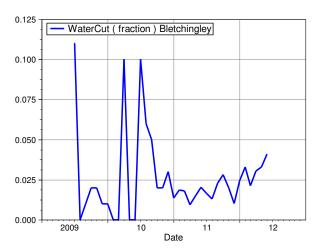


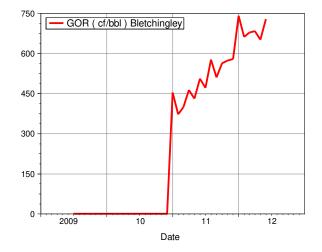
Avington Production History



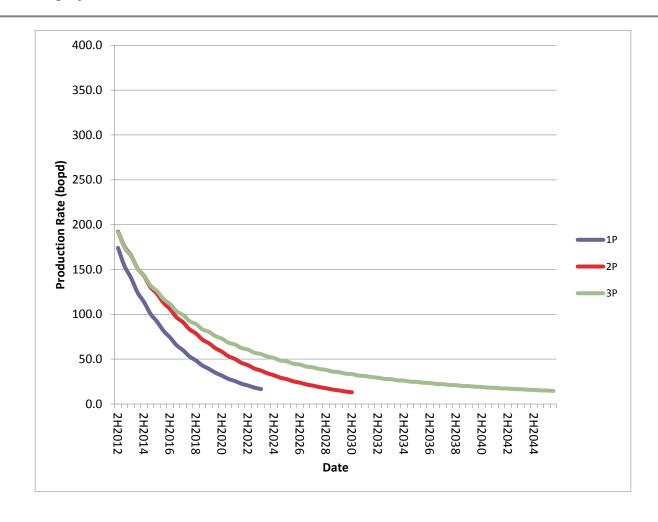


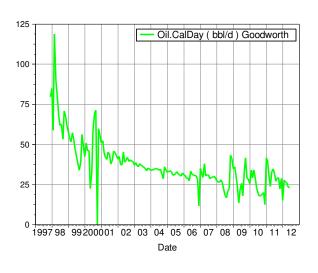

Avington Forecast

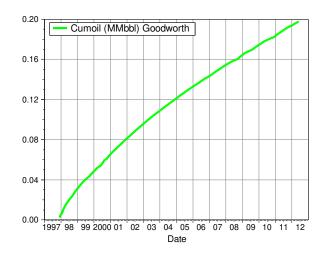


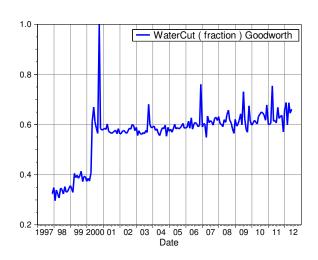


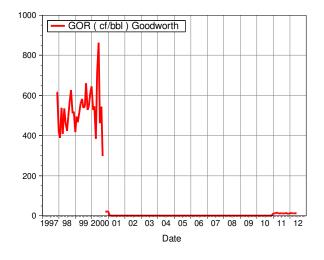
Bletchingley Production History



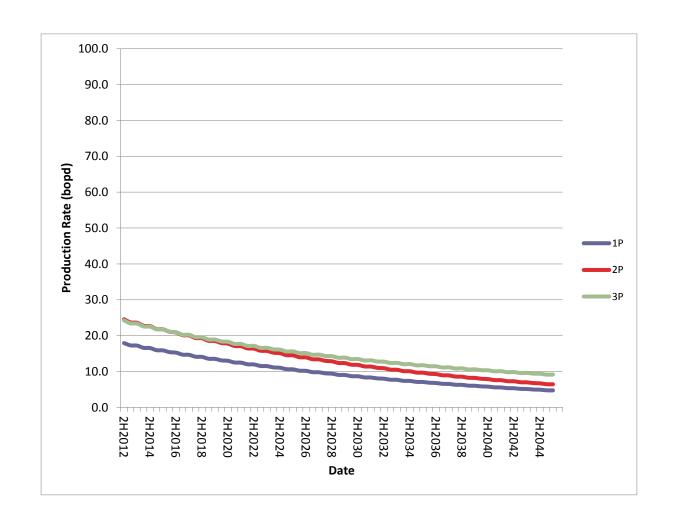


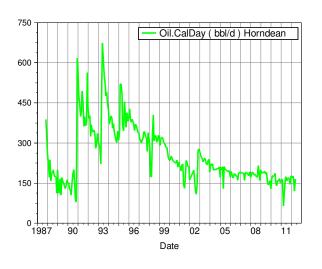

Bletchingley Forecast

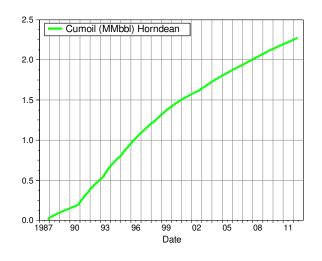


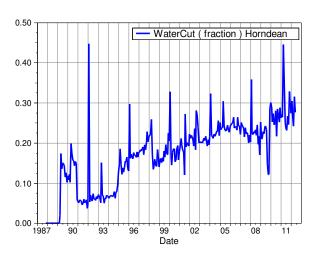


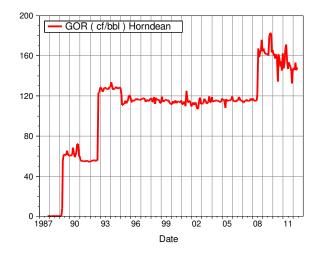
Goodworth Production History



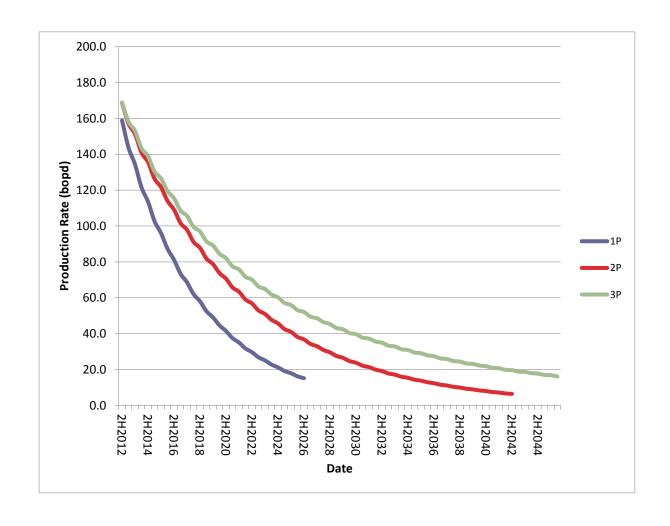


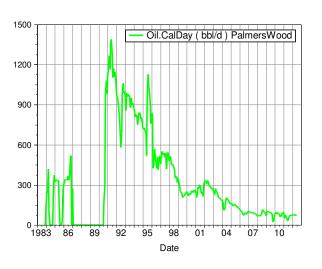

Goodworth Forecast

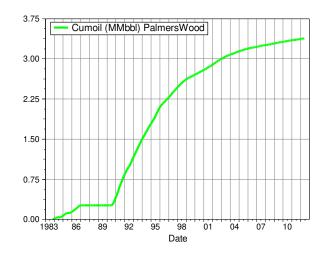


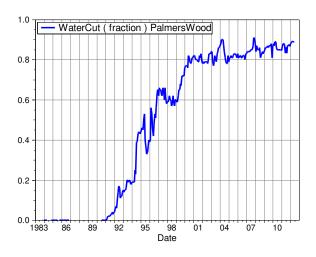


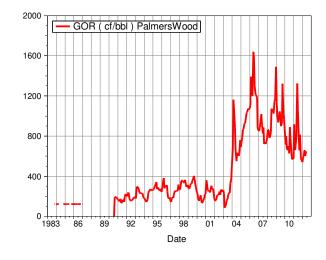
Horndean Production History



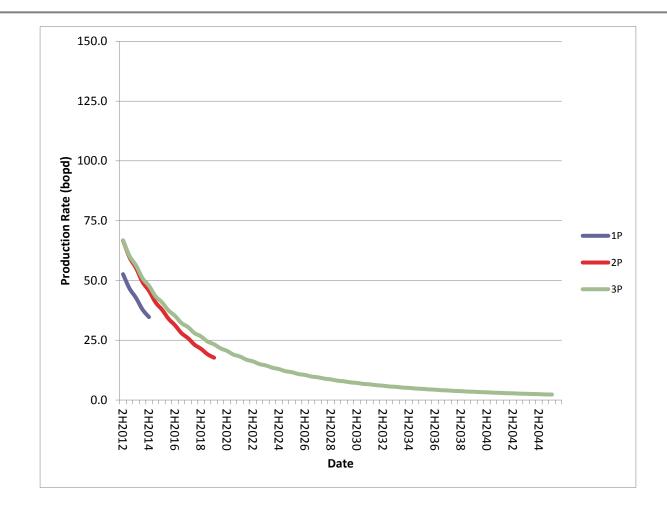


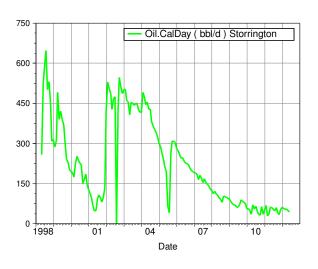

Horndean Forecast

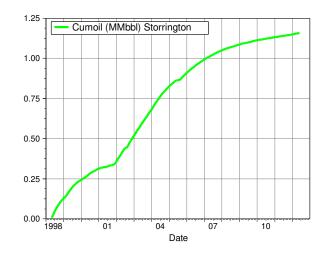


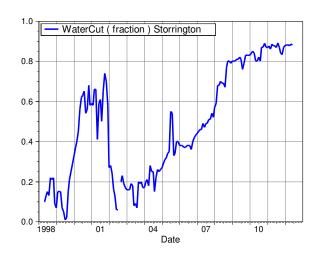


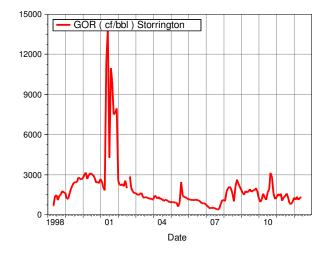
Palmers Wood Production History



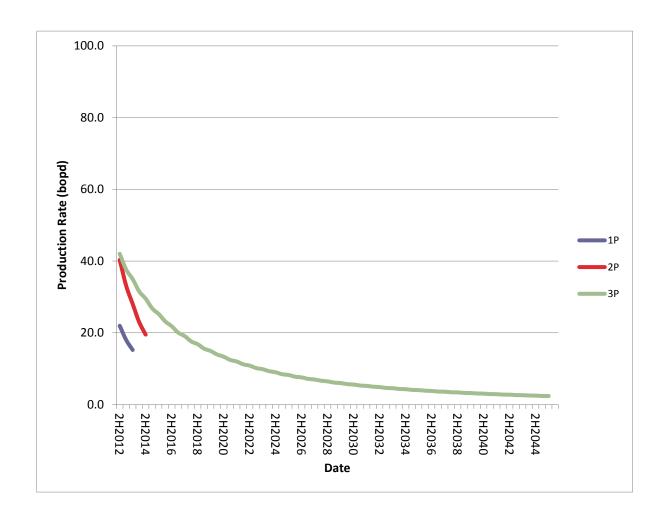


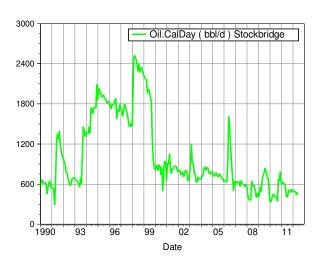

Palmers Wood Forecast

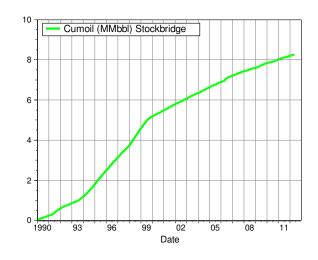




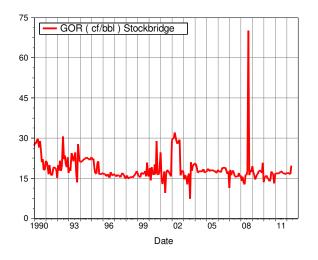
Storrington Production History



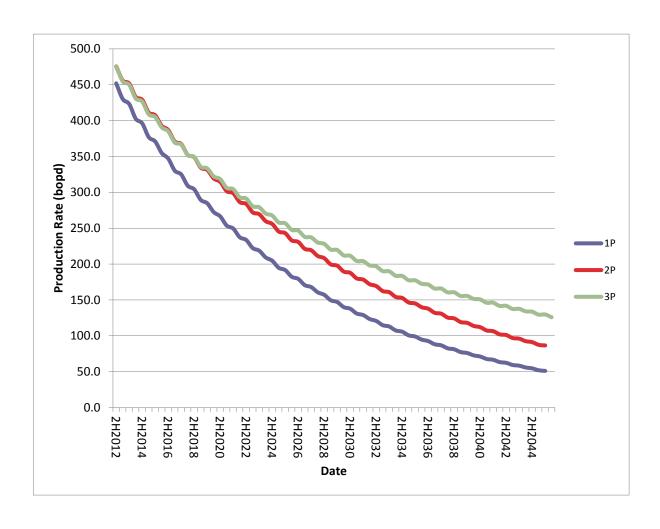



Storrington Forecast





Stockbridge Production History



Stockbridge Forecast

