DEGOLYER AND MACNAUGHTON

5001 SPRING VALLEY ROAD
SUITE 800 EAST
DALLAS, TEXAS 75244

This is a digital representation of a DeGolyer and MacNaughton report.

This file is intended to be a manifestation of certain data in the subject report and as such are subject to the same conditions thereof. The information and data contained in this file may be subject to misinterpretation; therefore, the signed and bound copy of this report should be considered the only authoritative source of such information.

DEGOLYER AND MACNAUGHTON

500 I SPRING VALLEY ROAD SUITE 800 EAST DALLAS, TEXAS 75244

REPORT
as of
JULY 31, 2016
on the
UNCONVENTIONAL PROSPECTIVE RESOURCES
attributable to
VARIOUS PROSPECTS
owned by
IGAS ENERGY PLC
in
VARIOUS LICENSE BLOCKS
UNITED KINGDOM

TABLE of CONTENTS

	Page
FOREWORD Scope of Investigation Authority Source of Information	1 3
DEFINITION of UNCONVENTIONAL PROSPECTIVE RESOURCES	3 4
ESTIMATION of UNCONVENTIONAL PROSPECTIVE RESOURCE Volumetrics, Quantitative Risk Assessment, and the Application of $P_{\rm g}$.	
SUMMARY and CONCLUSIONS	14
GLOSSARY	17
TABLES	
Table 1 – Prospect Portfolio Summary	
Table 2 – Estimate of the Gross Unconventional Prospective Raw Natur Gas Resources	ral
Table 3 – Estimate of the Working Interest Unconventional Prospective Natural Gas Resources	Raw
Table 4 – Unconventional Prospective Raw Natural Gas Resources, Probability Distributions	

 $\begin{array}{lll} \textbf{APPENDIX} - Bound \ with \ report \\ Table & A1-BGS \ Methodology \ of \ Gross \ Gas \ In-Place, \ Deterministic \ Estimate \end{array}$

DEGOLYER AND MACNAUGHTON

5001 Spring Valley Road Suite 800 East Dallas, Texas 75244

REPORT
as of
JULY 31, 2016
on the
UNCONVENTIONAL PROSPECTIVE RESOURCES
attributable to
VARIOUS PROSPECTS
owned by
IGAS ENERGY PLC
in
VARIOUS LICENSE BLOCKS
UNITED KINGDOM

FOREWORD

Scope of Investigation

This report presents estimates, as of July 31, 2016, of the unconventional

prospective petroleum resources of various prospects located in various license blocks in the United Kingdom. This report is being prepared on behalf of IGas Energy PLC (IGas). IGas has represented that it currently owns various working interests in these prospects under the terms of the exploration and production licenses issued (Table 1).

A possibility exists that the prospects will not result in successful discoveries and development, in which case there could be no future revenue. There is no certainty that any portion of the unconventional prospective resources estimated herein will be discovered. If discovered, there is no certainty that it will be commercially viable to produce any portion of the unconventional prospective resources evaluated.

Estimates of the unconventional prospective resources should be regarded only as estimates that may change as additional information becomes available. Not only are such unconventional

prospective resources estimates based on that information which is currently available, but such estimates are also subject to the uncertainties inherent in the application of judgmental factors in interpreting such information. Unconventional prospective resources quantities estimates should not be confused with those quantities that are associated with contingent resources or reserves due to the additional risks involved. The quantities that might actually be recovered, should they be discovered and developed, may differ significantly from the estimates presented herein.

The unconventional prospective resources estimates presented in this report have been prepared in accordance with the Petroleum Resources Management System (PRMS) approved in March 2007 by the Society of Petroleum Engineers, the World Petroleum Council, the American Association of Petroleum Geologists, and the Society of Petroleum Evaluation Engineers. These unconventional prospective resources definitions are discussed in detail in the Definition of Unconventional Prospective Resources section of this report.

The unconventional prospective resources estimated in this report are expressed as gross and working interest unconventional prospective resources. Gross unconventional prospective resources are defined as the total estimated petroleum that is potentially recoverable from undiscovered accumulations after July 31, 2016. Working interest unconventional prospective resources are defined as the product of the gross unconventional prospective resources and IGas working interest.

The unconventional prospective resources estimated herein are those quantities of petroleum that are potentially recoverable from accumulations yet to be discovered. Because of the uncertainty of commerciality and the lack of sufficient exploration drilling, the unconventional prospective resources estimated herein cannot be classified as contingent resources or reserves. The unconventional prospective resources estimates in this report are not provided as a means of comparison to contingent resources or reserves. Table 1 summarizes ownership, potential hydrocarbon phase, and prospect location for the prospect portfolio presented herein. Tables 2 and 3 summarize the prospective resources volumes and probability of geologic success (Pg) for the prospect portfolio estimated herein. Table 4 summarizes the prospective resources volumes and various potential target parameters for the prospect portfolio estimated herein.

Authority

This report was authorized by John Blaymires, COO, IGas.

Source of Information

In the preparation of this report we have relied, without independent verification,

upon information furnished by or on behalf of IGas with respect to the property interests to be evaluated, subsurface data as they pertain to the target objectives and prospects, and various other information and technical data that were accepted as represented. Site visits to the prospects evaluated herein were not made by DeGolyer and MacNaughton, as these potential accumulations are undrilled and prospective; therefore, production facilities are not relevant. This report was based on data available as of July 31, 2016.

DEFINITION of UNCONVENTIONAL PROSPECTIVE RESOURCES

Estimates of petroleum resources included in this report are classified as unconventional prospective resources and have been prepared in accordance with the PRMS approved in March 2007 by the Society of Petroleum Engineers, the World Petroleum Council, the American Association of Petroleum Geologists, and the Society of Petroleum Evaluation Engineers. Because of the lack of commerciality or sufficient drilling, the unconventional prospective resources estimated herein cannot be classified as contingent resources or reserves. The unconventional petroleum resources are classified as follows:

Unconventional Prospective Resources — Those quantities of petroleum that are estimated, as of a given date, to be potentially recoverable from undiscovered unconventional accumulations by application of future development projects. Unconventional Prospective Resources may exist in petroleum accumulations that are pervasive throughout a large potential production area and would not be significantly affected by hydrodynamic influences (also called continuous-type deposits). Typically, such accumulations (once discovered) require specialized extraction technology (e.g., dewatering of CBM*, massive fracturing programs for shale gas, shale oil, tight gas, steam and/or solvents to mobilize bitumen for in-situ recovery, and, in some cases, mining activities).

In contrast to conventional reservoirs, natural gas can also be found in more difficult to extract unconventional deposits, such as coal beds (coal seam gas), or in shales (shale gas), low quality reservoirs (tight gas), or as gas hydrates.

Shale Oil, Shale Gas, and Coal Seam Gas are examples where the natural gas or oil is still within the source rock, not having migrated to a porous and permeable reservoir.

Tight Gas occurs within low permeability reservoir rocks, which are rocks with matrix porosities of 10 per cent or less and permeabilities of 0.1 millidarcy (mD) or less, exclusive of fractures. Tight gas can be regionally

distributed (for example, basin-centered gas), rather than accumulated in a readily producible reservoir in a discrete structural closure as in a conventional gas field.

Gas Hydrates are naturally occurring ice-like solids (clathrates) in which water molecules trap gas molecules in deep-sea sediments and in and below the permafrost soils of the polar regions.

The estimation of resources quantities for a prospect is subject to both technical and commercial uncertainties and, in general, may be quoted as a range. The range of uncertainty reflects a reasonable range of estimated potentially recoverable quantities. In all cases, the range of uncertainty is dependent on the amount and quality of both technical and commercial data that are available and may change as more data become available.

Low, Best, High, and Mean Estimates – Estimates of petroleum resources in this report are expressed using the terms low estimate, best estimate, high estimate, and mean estimate to reflect the range of uncertainty.

A detailed explanation of the probabilistic terms used herein and identified with an asterisk (*) is included in the glossary bound with this report. For probabilistic estimates of petroleum resources, the low estimate reported herein is the P_{90}^* quantity derived from probabilistic analysis. This means that there is at least a 90-percent probability that, assuming the prospect is discovered and developed, the quantities actually recovered will equal or exceed the low estimate. The best (median) estimate is the P_{50}^* quantity derived from probabilistic analysis. This means that there is at least a 50-percent probability that, assuming the prospect is discovered and developed, the quantities actually recovered will equal or exceed the best (median) estimate. The high estimate is the P_{10}^* quantity derived from probabilistic analysis. This means that there is at least a 10-percent probability that, assuming the prospect is discovered and developed, the quantities actually recovered will equal or exceed the high estimate. The expected value* (EV), an outcome of the probabilistic analysis, is the mean estimate.

Uncertainties Related to Prospective Resources - The quantity of petroleum discovered by exploration drilling depends on the number of

prospects that are successful as well as the quantity that each success contains. Reliable forecasts of these quantities are, therefore, dependent on accurate predictions of the number of discoveries that are likely to be made if the entire portfolio of prospects is drilled. The accuracy of this forecast depends on the portfolio size, and an accurate assessment of the $P_{\rm g}$ *.

Probability of Geologic Success – The probability of geologic success (P_g) is defined as the probability of discovering reservoirs that flow hydrocarbons at a measurable rate. The P_g is estimated by quantifying with a probability each of the following individual geologic chance factors: trap, source, reservoir, and migration. The product of the probabilities of these four chance factors is P_g . P_g is predicated and correlated to the minimum case prospective resources gross recoverable volume(s). Consequently, the P_g is not linked to economically viable volumes, economic flow rates, or economic field size assumptions.

In this report estimates of prospective resources are presented both before and after adjustment for P_g . Total prospective resources estimates are based on the probabilistic summation (statistical aggregate) of the quantities for the total inventory of prospects. The statistical aggregate P_g -adjusted mean estimate, or "aggregated geologic chance-adjusted mean estimate," is a probability-weighted average geologic success case expectation (average) of the hydrocarbon quantities potentially recoverable if all of the prospects in a portfolio were drilled. The P_g -adjusted mean estimate is a "blended" quantity; it is a product of the statistically aggregated mean volume estimate and the portfolio's probability of geologic success. This statistical measure considers and stochastically quantifies the geological success and geological failure outcomes. Consequently, it represents the average or mean "geologic success case" volume outcome of drilling all of the prospects in the exploration program.

Application of P_g to estimate the P_g -adjusted prospective resources quantities does not equate prospective resources with reserves or contingent resources. P_g -adjusted prospective resources quantities cannot be compared directly to or aggregated with either reserves or contingent resources. Estimates of P_g are interpretive and are dependent on the quality and quantity of data currently made available. Future

data acquisition, such as additional drilling or seismic acquisition, can have a significant effect on P_g estimation. These additional data are not confined to the study area, but also include data from similar geologic settings or technological advancements that could affect the estimation of P_g .

Predictability versus Portfolio Size - The accuracy of forecasts of the number of discoveries that are likely to be made is constrained by the number of prospects in the exploration portfolio. The size of the portfolio and Pg together are helpful in gauging the limits on the reliability of these forecasts. A high Pg, which indicates a high chance of discovering measurable petroleum, may not require a large portfolio to ensure that at least one discovery will be made (assuming the Pg does not change during drilling of some of the prospects). By contrast, a low Pg, which indicates a low chance of discovering measurable petroleum, could require a large number of prospects to ensure a high confidence level of making even a single discovery. The relationship between portfolio size, Pg, and the probability of a fully unsuccessful drilling program that results in a series of wells not encountering measurable hydrocarbons is referred to herein as the predictability versus portfolio size (PPS) relationship*. It is critical to be aware of PPS, because an unsuccessful drilling program, which results in a series of wells that do not encounter measurable hydrocarbons, can adversely affect any exploration effort, resulting in a negative present worth.

For a large prospect portfolio, the P_g -adjusted mean (statistical aggregate) estimate of the prospective resources quantity should be a reasonable estimate of the recoverable petroleum quantities found if all prospects are drilled. When the number of prospects in the portfolio is small and the P_g is low, the recoverable petroleum actually found may be considerably smaller than the statistical aggregate P_g -adjusted mean estimate would indicate. It follows that the probability that all of the prospects will be unsuccessful is smaller when a large inventory of prospects exist.

Prospect Technical Evaluation Stage – A prospect can often be subcategorized based on its current stage of technical evaluation. The different stages of technical evaluation relate to the amount of geologic, geophysical, engineering, and petrophysical data as well as the quality of available data.

Prospect – A prospect is a potential accumulation that is sufficiently well defined to be a viable drilling target. For a prospect, sufficient data and analyses exist to identify and quantify the technical uncertainties, to determine reasonable ranges of geologic chance factors and engineering and petrophysical parameters, and to estimate prospective resources.

Lead – A lead is less well defined and requires additional data and/or evaluation to be classified as a prospect. An example would be a poorly defined closure mapped using sparse regional seismic data in a basin containing favorable source and reservoir(s). A lead may or may not be elevated to prospect status depending on the results of additional technical work. A lead must have a P_g equal to or less than 0.05 to reflect the inherent technical uncertainty.

Play – A project associated with a prospective trend of potential prospects, but which requires more data acquisition and/or evaluation in order to define specific leads or prospects.

ESTIMATION of UNCONVENTIONAL PROSPECTIVE RESOURCES

Estimates of unconventional prospective resources were prepared by the use of standard geological and engineering methods generally accepted by the petroleum industry. The method or combination of methods used in the analysis of the reservoirs was tempered by experience with similar reservoirs, stage of development, and quality and completeness of basic data.

The probabilistic analysis of the unconventional prospective resources in this study considered the uncertainty in the amount of petroleum that may be discovered and the P_g . The uncertainty analysis addresses the range of possibilities for any given volumetric parameter. Minimum, maximum, low, best, high, and mean estimates of unconventional prospective resources were estimated to address this uncertainty. The P_g analysis addresses the probability that the identified prospect will contain petroleum that flows at a measurable rate.

Estimates of recovery efficiency presented in this report are based on analog data and global experience and reflect the potential range in recovery for the potential reservoirs considered in each prospect. Recovery efficiency estimates do not incorporate development or economic input and are subject to change upon selection of specific development options and costs, economic parameters, and product price scenarios.

Volumetrics, Quantitative Risk

Assessment, and the Application of Pg Minimum, low, modal, best, mean, high, and maximum representations of potential productive area were interpreted from maps, available seismic data, and/or analogy. Representations for the petrophysical parameters (porosity, hydrocarbon saturation, and net hydrocarbon thickness) and engineering parameters (recovery efficiency and fluid properties) were also estimated based on available well data, regional data, analog field data, and global experience. Individual probability distributions for rock volume and petrophysical and engineering parameters were estimated from these representations and are summarized in Table 4.

The distributions for the variables were derived from (1) scenario-based interpretations, (2) the geologic, geophysical, petrophysical, and engineering data available, (3) local, regional, and global

knowledge, and (4) field and case studies in the literature. The parameters used to model the recoverable quantities were potential productive area, net hydrocarbon thickness, geometric correction factor, porosity, hydrocarbon saturation, formation volume factor, and recovery efficiency. Minimum, mean, and maximum representations were used to statistically model and shape the input P_{90} , P_{50} , and P_{10} parameters. Potential productive area, net hydrocarbon thickness, and recovery efficiency were modeled using truncated lognormal distributions. Truncated normal distributions were used to model geometric correction factor, formation volume factor, porosity, and hydrocarbon saturation. Latin hypercube sampling was used to better represent the tails of the distributions.

Each individual volumetric parameter was investigated using a probabilistic approach with attention to variability. Deterministic data were used to anchor and shape the various distributions. The rock volume parameters had the greatest range of variability, and therefore had the greatest impact on the uncertainty of the simulation. The volumetric parameter variability was based on the structural and stratigraphic uncertainties due to the depositional environment and quality of the seismic data. Analog field data were statistically incorporated to derive uncertainty limits and constraints on the net hydrocarbon thickness pore volume. Uncertainty associated with the depth conversion, seismic interpretation, gross interval thickness mapping, and net hydrocarbon thickness assumptions were also derived from studies of analogous reservoirs, multiple interpretative scenarios, and sensitivity analyses.

A P_g analysis was applied to estimate the quantities that may actually result from drilling these unconventional prospects. In the P_g analysis, the P_g estimates were made for each prospect from the product of the probabilities of the four geologic chance factors: trap, reservoir, migration, and source. The P_g is predicated and correlated to the minimum case prospective resources gross recoverable volume(s). The P_g is not linked to economically viable volumes, economic flow rates, or economic field size assumptions. The P_g is predicated and correlated to the minimum case prospective resources gross recoverable volume(s).

The following equation was used in the

probabilistic volumetric model:

For Shale Gas:

$$PGUR = A \times h[43560 \times E_g \times \phi \times S_g + 1359.7 \times G_s \times \rho] \times R_f$$

where: PGUR = Prospective gross ultimate recovery (scf)

A = Productive area (acres)

h = Net hydrocarbon thickness (feet)

 E_g = Gas expansion factor (scf/rcf)

p = Porosity (decimal)

 S_g = Gas saturation (decimal)

G_s = Sorbed gas storage capacity (scf/ton)

ρ = Shale density (grams per cubic centimeter (g/cc))

 R_f = Recovery efficiency (decimal)

Estimates of gross and working interest unconventional prospective resources and the P_g estimates, as of July 31, 2016, evaluated herein are shown in Tables 2 and 3. The P_g -adjusted mean estimate of the unconventional prospective resources was then made by the probabilistic product of P_g and the resources distributions for the prospect. These results were then stochastically summed (zero dependency) to produce the statistical aggregate P_g -adjusted mean estimate unconventional prospective resources. The range in probability of the mean occurrence $(P_{\text{MEAN}})^*$ for the prospective resources volumes were estimated as defined in the glossary of this report. The range in P_{MEAN} for the statistical aggregate P_g -adjusted mean gas estimate is 0.05 to 0.08.

The prospective resources evaluated herein were estimated in accordance with the PRMS as described in the Definition of Unconventional Prospective Resources section of this report. The British Geological Survey (BGS) describes a methodology to estimate the volume of original gas in-place (OGIP) in areas where the source shale is present, thermally mature, and at a depth of adequate pressure, (Andrews 2013). This OGIP estimation does not consider uncertainty in potentially productive areas, rather it characterizes the area in whole. At the request of IGas, the BGS methodology was utilized and estimates of OGIP analogous to the BGS methodology are described and shown in the Appendix and Table A1 bound with this report.

Application of the P_g factor to estimate the P_g -adjusted prospective resources quantities does not equate prospective resources with reserves or contingent resources. The P_g -adjusted estimates of prospective resources quantities cannot be compared directly to or aggregated with either reserves or contingent resources. Estimates of P_g are interpretive and are dependent

on the quality and quantity of data currently available. Future data acquisition, such as additional drilling or seismic acquisition, can have a significant effect on P_g estimation. These additional data are not confined to the area of study, but also include data from similar geologic settings or from technological advancements that could affect the estimation of P_g or impact the interpretation of the petroleum system.

Non-associated gas is gas at initial reservoir conditions with no crude oil present in the reservoir. Gas-cap gas is gas at initial reservoir conditions and is in communication with an underlying oil zone. Solution gas is gas dissolved in crude oil at initial reservoir conditions. In known accumulations, solution gas and gas-cap gas are sometimes produced together and, as a whole, referred to as associated gas. Prospective raw natural gas quantities (non-associated and associated) included herein are defined as the total gas potentially producible from the prospective reservoirs before any reduction for shrinkage for potential field and/or platform handling, separation, processing, fuel usage, flaring, reinjection, and/or pipeline losses.

It is not certain whether prospective reservoirs will be gas bearing, oil bearing, or water bearing. Hydrocarbon phase determination is based on the phase chance of occurrence per the present interpretation of the petroleum system. Unconventional prospective resources volumes in this report are identified herein as raw natural gas. In this report, 31 potential accumulations are referred to as prospects to reflect the current stage of technical evaluation.

In this report, gas quantities are expressed in English units at a temperature base of 60 degrees Fahrenheit (°F) and at a pressure base of 14.7 pounds per square inch absolute (psia).

The application of any geologic or economic chance factor to these unconventional prospective resources quantities does not equate them with reserves or contingent resources. Chance factor-adjusted estimates (geological or economic) of unconventional prospective resources quantities cannot be compared directly to or aggregated with contingent resources or reserves.

There is no certainty that any portion of the unconventional prospective resources estimated herein will be discovered. If

discovered, there is no certainty that it will be commercially viable to produce any portion of the unconventional prospective resources evaluated.

SUMMARY and CONCLUSIONS

Prospective resources in 31 prospects have been evaluated in various license blocks in the United Kingdom. The unconventional prospective resources estimates presented below are based on the statistical aggregation method. Estimates of the gross and working interest unconventional prospective raw natural gas resources, as of July 31, 2016, are summarized as follows, expressed in English units in millions of cubic feet (10⁶ft³):

	Low Estimate	Best Estimate	High Estimate	Mean Estimate
Gross Unconventional Raw Natural Gas Prospective Resources, $10^6 {\rm ft}^3$	16,737,566	22,974,272	32,042,540	23,809,012
Working Interest Unconventional Raw Natural Gas Prospective Resources, $10^6 { m ft}^3$	7,669,833	10,562,549	14,722,008	10,955,834

Notes

- 1. Low, best, high, and mean estimates in this table are P_{90} , P_{50} , P_{10} , and mean, respectively.
- 2. P_g has not been applied to the volumes in this table.
- 3. Application of any geological and economic chance factor does not equate unconventional prospective resources to contingent resources or reserves.
- 4. The unconventional prospective resources presented above are based on the statistical aggregation method.
- 5. There is no certainty that any portion of the unconventional prospective resources estimated herein will be discovered. If discovered, there is no certainty that it will be commercially viable to produce any portion of the unconventional prospective resources evaluated.

The gross and working interest statistical aggregate P_g -adjusted mean estimate unconventional prospective raw natural gas resources, as of July 31, 2016, are summarized as follows, expressed in English units in $10^6 {\rm ft}^3$:

	Mean Estimate
Gross P_g -Adjusted Unconventional Raw Natural Gas Prospective Resources, $10^6 { m ft}^3$	5,436,310
Working Interest P_g -Adjusted Unconventional Raw Natural Gas Prospective Resources, $10^6 { m ft}^3$	2,543,273

Notes:

- 1. Application of any geological and economic chance factor does not equate unconventional prospective resources to contingent resources or reserves.
- 2. The unconventional prospective resources presented above are based on the statistical aggregation method.
- 3. P_g is predicated on and correlated to the minimum case prospective resources gross recoverable volume(s). The P_g is not linked to economically viable volumes, economic flow rates, or economic field size assumptions.
- 4. The range in P_{MEAN} for the statistical aggregate P_g -adjusted mean gas estimate is 0.05 to 0.08.
- 5. There is no certainty that any portion of the prospective resources estimated herein will be discovered. If discovered, there is no certainty that it will be commercially viable to produce any portion of the prospective resources evaluated.

The arithmetic summation method was used to aggregate resources quantities above the field, property, or project level. The prospective resources quantities aggregated by the arithmetic summation method for the unconventional prospects evaluated in this report are presented in the prospective resources tables bound with this report.

Submitted,

DeGOLYER and MacNAUGHTON

Texas Registered Engineering Firm F-716

SIGNED: October 11, 2016

John W. Hornbrook, P.E. Senior Vice President DeGolyer and MacNaughton

GLOSSARY

Accumulation — The term accumulation is used to identify an individual body of moveable petroleum. A known accumulation (one determined to contain reserves or contingent resources) must have been penetrated by a well. The well must have clearly demonstrated the existence of moveable petroleum by flow to the surface or at least some recovery of a sample of petroleum through the well. However, log and/or core data from the well may establish an accumulation, provided there is a good analogy to a nearby and geologically comparable known accumulation.

Arithmetic Summation – The process of adding a set of numbers that represent estimates of resources quantities at the reservoir, prospect, or portfolio level and estimates of PPW₁₀ at the prospect or portfolio level. Statistical aggregation yields different results.

Best (Median) *Estimate* – The best (median) estimate is the P₅₀ quantity. P₅₀ means that there is a 50-percent chance that an estimated quantity, such as a prospective resources volume or associated quantity, will be equaled or exceeded.

Barrel of Oil Equivalent – Gas quantities are converted to barrels of oil equivalent (BOE) using 6,000 cubic feet of gas per barrel.

Coal Bed Methane – Coal bed methane (CBM) is a form of natural gas extracted from coal beds. Coals are unconventional reservoirs characterzied by more than 50 percent by weight and more than 70 percent by volume of carbonaceous material formed from compaction and induration of variously altered plant remains similar to those in peaty deposits. Gas is generated as a result of the coalification of the organic matter, and is generally 85 to 99 percent methane. Gas is held to the coal matrix by sorption. CBM is also known as coal seam gas.

Contingent Resources – Those quantities of petroleum estimated, as of a given date, to be potentially recoverable from known accumulations by application of development projects, but which are not currently considered to be commercially recoverable due to one or more contingencies.

Geometric Correction Factor – The geometric correction factor (GCF) is a geometry adjustment correction that takes into account the relationship of the potential fluid contact to the geometry of the reservoir and trap. Input parameters used to estimate the geometric correction factor include trap shape, length-to-width ratio, potential reservoir thickness, and the height of the potential trapping closure (potential hydrocarbon column height).

High Estimate – The high estimate is the P_{10} quantity. P_{10} means there is a 10-percent chance that an estimated quantity, such as a prospective resources volume or associated quantity, will be equaled or exceeded.

Lead – A lead is less well defined and requires additional data and/or evaluation to be classified as a prospect. An example would be a poorly defined closure mapped using sparse regional seismic data in a basin containing favorable source and reservoir(s). A lead may or may not be elevated to prospect status depending on the results of additional technical work. A lead must have a P_g equal to or less than 0.05 to reflect the inherent technical uncertainty.

Low Estimate – The low estimate is the P₉₀ quantity. P₉₀ means there is a 90-percent chance that an estimated quantity, such as a prospective resources volume or associated quantity, will be equaled or exceeded.

Mean Estimate – In accordance with petroleum industry standards, the mean estimate is the probability-weighted average (expected value), which typically has a probability in the P_{45} to P_{15} range, depending on the variance of prospective resources volume or associated quantity. Therefore, the probability of a prospect or accumulation containing the probability-weighted average volume or greater is usually between 45 and 15 percent. The mean estimate is the preferred probabilistic estimate of resources volumes.

Median – Median is the P_{50} quantity, where the P_{50} means there is a 50-percent chance that a given variable (such as prospective resources, porosity, or water saturation) is equaled or exceeded. The median of a data set is a number such that half the measurements are below the median and half are above.

The median is the best estimate in probabilistic estimations of prospective resources, as required by the PRMS guidelines.

Migration Chance Factor – Migration chance factor (P_{migration}) is defined as the probability that a trap either predates or is coincident with petroleum migration and that there exists vertical and/or lateral migration pathways linking the source to the trap.

Mode – The mode is the quantity that occurs with the greatest frequency in the data set and therefore is the quantity that has the greatest probability of occurrence. However, the mode may not be uniquely defined, as is the case in multimodal distributions.

 P_g -adjusted Mean Estimate, statistical aggregate – The statistical aggregate P_g -adjusted mean estimate, or "aggregated geologic chance-adjusted mean

estimate," is a probability-weighted average geologic success case expectation (average) of the hydrocarbon quantities potentially discovered if all of the prospects in a portfolio were drilled. The P_g -adjusted mean estimate is a "blended" quantity; it is a product of the statistically aggregated mean volume estimate and the portfolio's probability of geologic success. This statistical measure considers and stochastically quantifies the geological success and geological failure outcomes. Consequently, it represents the average or mean "geologic success case" volume outcome of drilling all of the prospects in the exploration portfolio. The P_g -adjusted mean volume estimate for a single prospect is calculated as follows:

$$P_g$$
-adjusted mean estimate = $P_g \times$ mean estimate (1)
(mean geological success case volumes)

The probability of the statistical aggregate P_g -adjusted mean estimate is estimated by the product of the portfolio P_g and the probability of the mean volume occurrence for the entire prospect portfolio. The equation is as follows:

Statistical aggregate P_g -adjusted mean estimate, probability of occurrence = Portfolio $P_g \times$ mean volume probability estimate for the portfolio

 P_n Nomenclature – This report uses the convention of denoting probability with a subscript representing the greater than cumulative probability distribution. As such, the notation P_n indicates the probability that there is an n-percent chance that a specific input or output quantity will be equaled or exceeded. For example, P_{90} means that there is a 90-percent chance that a variable (such as prospective resources, porosity, or water saturation) is equaled or exceeded.

Play – A project associated with a prospective trend of potential prospects, but which requires more data acquisition and/or evaluation in order to define specific leads or prospects.

Predictability versus Portfolio Size – The number of prospects in a prospect portfolio influences the reliability of the forecast of drilling results. The relationship between predictability versus portfolio size (PPS) is also known in the petroleum industry literature as "Gambler's Ruin." The relationship of probability to portfolio size is described by the binomial probability equation given as follows:

$$P_{x^n} = (C_{x^n})(p)^x (1-p)^{n-x}$$
(3)

where: P_{x^n} = the probability of x successes in n trials

 C_{x^n} = the number of mutually exclusive ways that x successes can be arranged in n trials

p = the probability of success for a given trial (for petroleum exploration, this is P_g)

x = the number of successes (e.g., the number of discoveries)

n = the number of trials (e.g., the number of wells to be drilled)

Note: For the case of n successive dry holes, C_{x^n} and p each equals 1, so the probability of failure is the quantity (1-p) raised to the number of trials.

Probability of Geologic Success – The probability of geologic success (P_g) is defined as the probability of discovering reservoirs that flow hydrocarbons at a measurable rate. The P_g is estimated by quantifying with a probability each of the following individual geologic chance factors: trap, source, reservoir, and migration. The product of the probabilities of these four chance factors is P_g . P_g is predicated and correlated to the minimum case prospective resources gross recoverable volume(s). Consequently, the P_g is not linked to economically viable volumes, economic flow rates, or economic field size assumptions.

Probability of the Mean Occurrence – The probability of the mean occurrence P_{MEAN} is defined as the probability of occurrence of the mean quantity as defined by the distribution(s) in the Monte Carlo simulation. The probability associated with the mean is dependent on the variance of the distribution, and type of distribution from which the mean is estimated. Typically, the range in probability of occurrence for the statistical mean estimate is 0.45 to 0.15 for lognormal (positively skewed) distributions. The statistical mean has a probability of occurrence of 0.50 for normal (symmetric) distributions.

Prospect – A prospect is a potential accumulation that is sufficiently well defined to be a viable drilling target. For a prospect, sufficient data and analyses exist to identify and quantify the technical uncertainties, to determine reasonable ranges of geologic chance factors and engineering and petrophysical parameters, and to estimate prospective resources. In addition, a viable drilling target requires that 70 percent of the median potential production area be located within the block or license area of interest.

Prospective Resources – Those quantities of petroleum that are estimated, as of a given date, to be potentially recoverable from undiscovered accumulations by application of future development projects.

Raw Natural Gas – Raw natural gas is the total gas produced from the reservoir prior to processing or separation and includes all nonhydrocarbon components as well as any gas equivalent of condensate.

Reservoir Chance Factor – The reservoir chance factor ($P_{reservoir}$) is defined as the probability associated with the presence of porous and permeable reservoir quality rock.

Source Chance Factor – The source chance factor (P_{source}) is defined as the probability associated with the presence of a hydrocarbon source rock rich enough, of sufficient volume, and in the proper spatial position to charge the prospective area or areas.

Standard Deviation – Standard deviation (SD) is a measure of distribution spread. It is the positive square root of the variance. The variance is the summation of the squared distance from the mean of all possible values. Since the units of standard deviation are the same as those of the sample set, it is the most practical measure of population spread.

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{n} (\mathbf{x}_i - \mu)^2}{n-1}}$$
 (4)

where: σ = standard deviation

 σ^2 = variance

n = sample size

 x_i = value in data set

 $\mu = \text{sample set mean}$

Statistical Aggregation – The process of probabilistically aggregating distributions that represent estimates of resources quantities at the reservoir, prospect, or portfolio level and estimates of PPW₁₀ at the prospect or portfolio level. Arithmetic summation yields different results, except for the mean estimate.

Trap Chance Factor – The trap chance factor (P_{trap}) is defined as the probability associated with the presence of a structural closure and/or a stratigraphic trapping configuration with competent vertical and lateral seals, and the lack of any post migration seal integrity events or breaches.

Unconventional Prospective Resources — Those quantities of petroleum that are estimated, as of a given date, to be potentially recoverable from undiscovered unconventional accumulations by application of future development projects. Unconventional prospective resources may exist in petroleum accumulations that are pervasive throughout a large potential production area and would not be significantly affected by hydrodynamic influences (also called "continuous-type deposits"). Typically, such accumulations (once discovered) require specialized extraction technology (e.g., dewatering of CBM, massive fracturing programs for shale gas, shale oil, tight gas, steam and/or solvents to mobilize bitumen for in-situ recovery, and, in some cases, mining activities).

Variance – The variance (σ^2) is a measure of how much the distribution is spread from the mean. The variance sums up the squared distance from the mean of all possible values of x. The variance has units that are the squared units of x. The use of these units limits the intuitive value of variance.

$$\sigma^2 = \frac{\sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})}{n-1} \tag{5}$$

where: $\sigma^2 = \text{variance}$

n = sample size

 x_i = value in data set μ = sample set mean

Working Interest – Working interest prospective resources are that portion of the gross prospective resources to be potentially produced from the properties attributable to the interests owned by "Company" before deduction of any associated royalty burdens, net profits payable or government profit share. Working interest is a percentage of ownership in an oil and gas lease granting its owner the right to explore, drill and produce oil and gas from a tract of property. Working interest owners are obligated to pay a corresponding percentage of the cost of leasing, drilling, producing and operating a well or unit. The working interest also entitles its owner to share in production revenues with other working interest owners, based on the percentage of working interest owned.

TABLE 1 PROSPECT PORTFOLIO SUMMARY as of JULY 31, 2016 for IGAS in

in VARIOUS PROSPECTS VARIOUS LICENSE BLOCKS UNITED KINGDOM

				Working Interest	Potential Hydrocarbon
Prospect	Area	License	Blocks	(decimal)	Phase
York	North A-S	PEDL146	SE/54a, SE/55, SE/56	0.75	Gas
Normanby	North A-S	PL 162	SE/81b.SE/91a	1.00	Gas
Thome	East Midlands	EXL 288	SE/51a B/C/D, SE/61a B/C/D, SE/61b, SE/61c	0.75	Gas
Gainsborough/Beckingham/Corringham/Glentworth	East Midlands	ML4	SK/78c,d,SK/79b,c,SK/88a,d,SK/89d,f,SK/98a,SK/99c	1.00	Gas
West Everton	East Midlands	PEDL139	SK/69	0.32	Gas
Everton/Springs Road	East Midlands	PEDL140	SK/78f, SK/79a	0.32	Gas
Ranskill	East Midlands	PEDL012	SK/68a	0.55	Gas
Lound	East Midlands	PEDL200	SK/58b, SK/68b	0.55	Gas
Cold Hanworth	East Midlands	PEDL6	SK/78a, SK/88c,f,SK/98c,i, TF/8a	1.00	Gas
Armthorpe	East Midlands	PEDL169	SE/60a BELOW SMB	0.80	Gas
Hemswarth	East Midlands	PEDL273	SE41e/SE31c	0.35	Gas
Willingham by Stow	East Midlands	PEDL316	SK89e/SK88b/SK87c	0.35	Gas
Rawmarsh	East Midlands	PEDL305	SK59b/SK49	0.35	Gas
Welton/Nettleham/Scampton North/Stainton	East Midlands		TF/7b, TF/8b, SK/97b,SK/98e	1.00	Gas
East Glentworth	East Midlands		SK/98b	1.00	Gas
Bothamsall	East Midlands		SK/67d	1.00	Gas
South Leverton	East Midlands	ML7	SK/77c,SK/78e,SK/87a,SK/88e	1.00	Gas
West Beckingham	East Midlands		SK/78b,SK/79d	1.00	Gas
Chorlton	North West	PEDL188	SJ/45	0.75	Gas
Upton	North West	PEDL189	SJ/46	0.25	Gas
Four Oaks /Doe Green	North West	PEDL145	SJ/58b, SJ/58c, SJ/58d	0.40	Gas
Ellesmere Port	North West	PEDL184	SJ/27, SJ/28, SJ/37	0.50	Gas
Ince Marshes	North West	PEDL190	SJ/47	0.50	Gas
Parkside /Irlam	North West	PEDL193	SJ/68, SJ/69e, SJ/79	0.40	Gas
Burtonwood	North West	EXL 273	SJ/59a	0.15	Gas
Blacon	North West	PEDL147	SJ/36a	0.25	Gas
Sandbach	North West	PEDL295	SJ64/SJ65	0.30	Gas
Hemswell	North A-S	PEDL317	SK99a	1.00	Gas
Hemswell	East Midlands		SK/87f,SK/88h,i.SK/97a,SK/98f,g	0.75	Gas
Dunholme	East Midlands		SK/97c.SK/98d.TF/7a.TF/8c	1.00	Gas
Crewe	North West	PEDL293	SJ75/SJ76	0.30	Gas

TABLE 2 ESTIMATE of the GROSS PROSPECTIVE RAW NATURAL GAS RESOURCES as of JULY 31, 2016 for IGAS

MACNAUGHTON
F-71 6
TEXAS REGISTERED ENCINEERING FIRM

DEGGLYER

VARIOUS GAS PROSPECTS VARIOUS LICENSE BLOCKS UNITED KINGDOM

					Gross Pros	pective Raw	Natural Gas	Resources Sumi	mary
								Probability	
				Low	Best	High	Mean	of Geologic	P _u -Adjusted
				Estimate	Estimate	Estimate	Estimate	Success, Pu	Mean Estimate
Prospect	Area	License	Blocks	(10 ⁵ ft ³)	(10 ⁶ ft ³)	(10°ft³)	(10 ⁶ ft ³)	(decimal)	(10 ⁶ ft ³)
York	North A-S	PEDL146	SE/54a, SE/55, SE/56	70,315	357,748	1.578.403	654,957	0.176	115,534
Normanby	North A-S	PL 162	SE/81b.SE/91a	794	4,233	18.988	8.008	9,176	1,413
Thorne	East Midlands	EXL 288	SE/51a B/C/D, SE/61a B/C/D, SE/61b, SE/61c	108,568	443,101	1,560,178	691,808	0.252	174,336
Gainsborough/Beckingham/Corringham/Glentworth	East Midlands		SK/78c,d.SK/79b.c,SK/88a,d.SK/89d.f.SK/98a.SK/99c	184,864	748,337	2,557.987	1,115.331	0.252	281,063
West Everton	East Midlands	PEDL139	SK/69	220,208	918,443	3,432,701	1,433,889	0.252	361,340
Everton/Springs Road	East Midlands		SK/78f, SK/79a	294.814	1,270,238	4.625.499	2.026.567	0.252	510,695
Ranskill	East Midlands		SK/68a	21,676	95,970	377.777	168,750	0.252	42,525
Laund	East Midlands		SK/58b, SK/68b	102,493	422,542	1,481,541	650,428	0.252	163,908
Cold Hanworth	East Midlands		SK/78a, SK/88c.f.SK/98c,i. TF/8a	71,466	322,783	1,162,796	508,651	0.252	128,180
Amithorpe	East Midlands		SE/60a BELOW SMB	225,096	925.162	3.030.320	1,401,378	0.252	353,147
Hernsworth	East Midlands		SE41e/SE31c	247,010	1,050,865	3.689.138	1,675,797	0.252	422,301
Willingham by Stow	East Midlands		SK89e/SK88b/SK87c	165,061	670,621	2,323,569	1,023,949	0.252	258,036
Rawmarsh	East Midlands		SK59b/SK49	232,184	1,008,768	3,684,636	1,588,435	0.252	400,286
Welton/Nettleham/Scampton North/Stainton	East Midlands		TF/7b, TF/8b, SK/97b,SK/98e	15,527	71,218	233,706	107,493	0.252	27,088
East Glentworth	East Midlands		SK/98b	696	3,260	11,572	4,884	0.252	1,231
Bothamsall	East Midlands		SK/67d	4.004	17,937	63,399	27,928	0.252	7,038
South Leverton	East Midlands		SK/77c,SK/78e.SK/87a.SK/88e	5,589	23,331	90.552	39,691	0.252	10.002
West Beckingham	East Midlands		SK/78b.SK/79d	2.915	14,312	47.905	21,398	0.252	5.392
Charitan	North West	PEDL188	SJ/45	35,889	142,735	502,439	222,445	0.202	44,845
Uptan	North West	PEDL189	SJ/46	128,750	545,350	1,894,031	848,795	0.202	171,117
Four Oaks /Doe Green	North West	PEDL145	SJ/58b, SJ/58c, SJ/58d	87,700	361,498	1,208,634	545,312	0.202	109,935
Ellesmere Port	North West	PEDL184	SJ/27, SJ/28, SJ/37	130,408	653,187	2,304,011	1,014,505	0.202	204,524
Ince Marshes	North West	PEDL190	SJ/47	116,540	502,539	1.706.005	755,519	0.202	152,313
Parkside /Irlam	North West	PEDL193	SJ/68, SJ/69e, SJ/79	193,711	753,240	2,672,375	1,156,423	0.202	233,135
Burlonwood	North West	EXL 273	SJ/59a	34,695	142,113	493,762	218,805	0.202	44,111
Blacon	North West	PEDL147	SJ/36a	133,884	567,788	2,018,845	889,532	0.202	179,330
Sandbach	North West	PEDL295	SJ64/SJ65	308,058	1,273,900	4,121,999	1,867,010	0.202	376,389
Hemswell	North A-S	PEDL317	SK99a	770	3,678	17,432	7,457	0.176	1,315
Hemswell	East Midlands		SK/87f,SK/88h,i,SK/97a,SK/98f,g	69,170	288,304	1,006,159	433,578	0.252	109,262
Dunhalme	East Midlands		SK/97c,SK/98d,TF/7a,TF/8c	6,562	26,781	95,255	42,492	0.252	103,202
Crewe	North West	PEDL293	SJ76/SJ76	435,159	1,753,511	6,220,145	2,657,797	0.202	535,812
Statistical Aggregate				16,737,566	22,974,272	32,042,540	23,809,012	0.228	5,436,310
Arithmetic Summation				3 654 576	15 383 492	54,231,755	23 809 D12	0.228	5,436,310

Notes:

- 1. Low, best, high, and mean estimates follow the PRMS guidelines for prospective resources.
- 2. Low, best, high, and mean estimates in this table are $P_{so},\,P_{so},\,P_{re}$, and mean respectively.
- 3. P_g is defined as the probability of discovering reservoirs which flow petroleum at a measurable rate.
- 4. P_g has been rounded for presentation purposes. Multiplication using this presented P_g may yield imprecise results. Dividing the P_g-adjusted mean estimate by the mean estimate yields the precise P_g.
- 5. Application of any geological and economic chance factor does not equate prospective resources to contingent resources or reserves.
- 6. Recovery efficiency is applied to prospective resources in this table.
- Arithmetic summation of probabilistic estimates produces invalid results except for the mean estimate.
 Arithmetic summation of probabilistic estimates is presented in this table in compliance with PRMS guidelines.
- 8. Summations may vary from those shown here due to rounding.
- There is no certainty that any portion of the prospective resources estimated herein will be discovered.
 If discovered, there is no certainty that it will be commercially viable to produce any portion of the prospective resources evaluated.
- 10. The range in $P_{\rm rest}$ for the statistical aggregate $P_{\rm g}$ -adjusted mean estimate is 0.05 to 0.08.

TABLE 3 ESTIMATE of the WORKING INTEREST PROSPECTIVE RAW NATURAL GAS RESOURCES as of JULY 31, 2016

for IGAS

VARIOUS GAS PROSPECTS
VARIOUS LICENSE BLOCKS
UNITED KINGDOM

				Working Interest Prospective Raw Natural Gas Resources Summary				Summary	
								Probability	
				Low	Best	High	Mean	of Geologic	P _u -Adjusted
				Estimate	Estimate	Estimate	Estimate	Success, Pu	Mean Estimate
Prospect	Area	License	Blocks	(10 ⁶ ft ³)	(10 ⁶ ft ³)	(10 ⁶ ft ³)	(10 ⁶ ft ³)	(decimal)	(10 ⁶ ft ³)
York	North A-S	PEDL146	SE/54a, SE/55, SE/56	52,736	268,311	1,183.802	491,218	0.176	86,651
Normanby	North A-S	PL 162	SE/81b,SE/91a	794	4,233	18,988	8,008	0.176	1,413
Thorne	East Midlands	EXL 288	SE/51a B/C/D, SE/61a B/C/D, SE/61b, SE/61c	81,426	332,326	1,170,133	518,856	0.252	130,752
Gainsborough/Beckingham/Corringham/Glentworth	East Midlands	ML4	SK/78c,d,SK/79b,c,SK/88a,d,SK/89d,f.SK/98a,SK/99c	184,864	748,337	2,557,987	1,115,331	0.252	281,063
West Everton	East Midlands	PEDL139	SK/69	70,467	293,902	1,098,464	458,844	0.252	115,629
Everton/Springs Road	East Midlands	PEDL140	SK/78f, SK/79a	94,340	406,476	1,480,160	648,502	0.252	163,422
Ranskill	East Midlands	PEDL012	SK/88a	11,922	52,783	207,777	92,812	0.252	23,389
Laund	East Midlands	PEDL200	SK/58b, SK/68b	56,371	232,398	814,848	357,736	0.252	90,149
Cold Hanworth	East Midlands	PEDL6	SK/78a, SK/88c,f,SK/98c,i, TF/8a	71,466	322,783	1,162,796	508,651	0.252	128,180
Armthorpe	East Midlands	PEDL169	SE/60a BELOW SMB	180,077	740,129	2,424,256	1,121,103	0.252	282,518
Hernsworth	East Midlands	PEDL273	SE41e/SE31c	86,453	367,803	1,291,198	586,529	0.252	147,805
Willingham by Stow	East Midlands	PEDL316	SK89e/SK88b/SK87c	57,771	234,717	813,249	358,382	0.252	90,312
Rawmarsh	East Midlands	PEDL305	SK59b/SK49	81,264	353,069	1,289,623	555,952	0.252	140,100
Welton/Nettleham/Scampton North/Stainton	East Midlands	PL179 (W)	TF/7b, TF/8b, SK/97b,SK/98e	15,527	71,218	233,706	107,493	0.252	27,088
East Glentworth	East Midlands	PL179 (EG)	SK/98b	696	3,260	11,572	4,884	0.252	1,231
Bothamsall	East Midlands	ML6	SK/67d	4,004	17,937	63,399	27,928	0.252	7,038
South Leverton	East Midlands	ML7	SK/77c,SK/78e,SK/87a,SK/88e	5,589	23,331	90,552	39,691	0.252	10,002
West Beckingham	East Midlands	PL178	SK/78b,SK/79d	2,915	14,312	47,905	21,398	0.252	5,392
Charlton	North West	PEDL188	SJ/45	26,917	107,051	376,829	166,833	0.202	33,634
Uptan	North West	PEDL189	SJ/46	32,188	136,338	473,508	212,199	0.202	42,779
Four Oaks /Doe Green	North West	PEDL145	SJ/58b, SJ/58c, SJ/58d	35,080	144,599	483,453	218,125	0.202	43,974
Ellesmere Port	North West	PEDL184	SJ/27, SJ/28, SJ/37	65,204	326,594	1,152,006	507,252	0.202	102,262
Ince Marshes	North West	PEDL190	SJ/47	58,270	251,270	853,003	377,759	0.202	76,156
Parkside /Irlam	North West	PEDL193	SJ/68, SJ/69e, SJ/79	77,485	301,296	1,068,950	462,569	0.202	93,254
Burlonwood	North West	EXL 273	SJ/59a	5,204	21,317	74,064	32,821	0.202	6,617
Blacon	North West	PEDL147	SJ/36a	33,471	141,947	504,711	222,383	0.202	44,832
Sandbach	North West	PEDL295	SJ64/SJ65	92,417	382,170	1,236,600	560,103	0.202	112,917
Hemswell	North A-S	PEDL317	SK99a	770	3,678	17,432	7,457	0.176	1,315
Hemswell	East Midlands	PEDL210	SK/87f,SK/88h,i,SK/97a,SK/98f,g	51,878	216,228	754,619	325,183	0.252	81,946
Dunhalme	East Midlands	AL9	SK/97c,5K/98d,TF/7a,TF/8c	6,562	26,781	95,255	42,492	0.252	10,798
Crewe	North West	PEDL293	SJ76/SJ76	130,548	526,053	1,866,044	797,339	0.202	160,744
Statistical Aggregate				7,669,833	10,562,549	14,722,008	10,955,834	0.232	2,543,273
Arithmetic Summation				1,874,575	7,072,546	24,915,888	10,955,834	0.232	2,543,273

Notes:

- 1. Low, best, high, and mean estimates follow the PRMS guidelines for prospective resources.
- 2. Low, best, high, and mean estimates in this table are P_{90}, P_{53}, P_{10} , and mean respectively.
- 3. P_g is defined as the probability of discovering reservoirs which flow petroleum at a measurable rate.
- 4. $P_{\rm g}$ has been rounded for presentation purposes. Multiplication using this presented $P_{\rm g}$ may yield imprecise results. Dividing the $P_{\rm g}$ -adjusted mean estimate by the mean estimate yields the precise $P_{\rm g}$
- 5. Application of any geological and economic chance factor does not equate prospective resources to contingent resources or reserves.
- 6. Recovery efficiency is applied to prospective resources in this table.
- Arithmetic summation of probabilistic estimates produces invalid results except for the mean estimate.
 Arithmetic summation of probabilistic estimates is presented in this table in compliance with PRMS guidelines.
- 8. Summations may vary from those shown here due to rounding.
- There is no certainty that any portion of the prospective resources estimated herein will be discovered.
 If discovered, there is no certainty that it will be commercially viable to produce any portion of the prospective resources evaluated.
- 10. The range in $P_{\rm rest}$ for the statistical aggregate $P_{\rm g}$ -adjusted mean estimate is 0.05 to 0.08.

TABLE 4
PROBABILITY DISTRIBUTIONS
for
MONTE CARLO SIMULATION
as of
JULY 31, 2016
for
IGAS
in
VARIOUS GAS PROSPECTS
VARIOUS LICENSE BLOCKS
UNITED KINGDOM

	Potential							
Prospect	Target	Parameter	P ₁₀₅	Pan	P ₅₀	P ₄₀	Pδ	Mean
York	PEDL146	Productive area lacres	9,435	19,523	30,351	46.647	87.562	31 915
1510	1 202140	Productive area, square kilometers	38.2	7S II	122.6	158.5	2734	129.2
		Net shale thickness, feet	26.20	72.47	148.27	302.95	1,060,12	173.26
		Natisha a thickness, maters	7.99	22.09	45.19	92.34	320.06	52.84
			0.004	14.116	49.400	92.040 92.040	167.910	51 064
		Scribed gas storage capacity, sofiton						
		Sorbed gas storage capacity, cubic meteration	0.00011	H 3852E	1 38341	25/7/3	4 (11149	1 45220
		Shale denaity, g/color tons/cubic meter	2.466	2.530	2.565	2,000	2,069	2 505
		Matrix corosity, decima	C.C24	0.040	C.C49	0.059	0.072	0.049
		Matrix gas suturation, decimal	0.178	0.352	C.504	0.658	0.861	0.505
		Lormation volume tactor, lisg	161	213	392	397	478	304
		Recovery efficiency, decimal	0.007	0.048	C 169	C 499	C 801	0.224
		Condensate Yield, barrels/MMscf	0.802	1.276	3 440	S 1/6	14 354	4.255
		Condensate, paind s	13,098	185,748	1.239 511	7,008 553	44,512,157	2,787.015
		Prospective OGIP, cubic feet	163,258.980,879	790,767 366,220	2,197 022,046 597	5,792 532,795 163	24,042,498,302,101	2,889.812,995.247
		Prospective gross ultimate recovery, cubic feet	8,982,120 E/1	70,315,223,818	357,747,993,804	1,578,402,856,215	10,710,428,442,842	654 957,114 888
Normanby	P_ 162	Productive area lacres	1 675	2,668	4.018	7 092	10,301	4,867
		Productive area, square kilometers	6.4	12 0	10.7	20.7	41.7	19.7
		Net shale thickness, feet	0.74	4.48	11.01	26.89	135.86	14.Cô
		Not shalp thickness, motors	0.22	1.38	3.35	8.20	41.41	4.29
		Sorbed get storage capacity, sof/ton	0.066	14.146	49.430	92.039	108.850	51806
		Scribed gas storage capacity, cubic molors/ton	0.00185	0.39606	1.30404	2,57709	4.72797	1,45225
		Shale density, g/color tons/oublg meter	2.478	2.530	2.065	2,000	2.057	2 505
		Matrix porosity, docima	0.012	0.040	0.058	0.071	0.099	0.056
		Matrix gas saturation, decimal	C.181	0.350	0.462	0.674	C.786	0.402
		Formation volume factor, Bg	181	213	302	397	479	304
		Recovery efficiency, decimal	0.007	0.048	C 169	C 498	C 801	0.224
		Condensate Yidid, barrels/MMsc*	0.802	1.273	3 439	9 180	14,388	4,430
		Condensate, same a	31	2,065	14,458	83,418	2,356 166	35 / 80
		Prospective OGIP, cubic feet	1,057,924,088	8,155,763,970	25,064,807,134	72,988,700,832	809,443,886,354	38 057,257.040
		Prospective gross ultimate recovery, cubic feet	20,509,864	794 087,250	4 232,549 710	18,988,347 110	183,430,600,267	8,008,205,920
Thorne	EXL 288	Productive area lacres	2,096	5,313	8,267	12,716	18,465	8,096
		Productive area iscuare kilometers	10.9	215	33.5	51.5	74.7	35.2
		Net shale thickness, feet	304.47	624,94	732.50	1 021.50	1,834.31	758.01
		Not shalp thickness, meters	62.80	150.99	223.25	311.34	559.07	231.03
		Sorbed gesistorage capacity, sof/ton	0.139	14.176	79,431	91,952	176.417	51 872
		Scribed gas storage capacity, cubic motors/ton	0.00090	0.39691	1.30407	2,57465	4,93960	1.45242
		Shale density, g/color tons/oubid meter	2,473	2.530	2.665	2,000	2.653	2,505
		Matrix porosity, docime	C.CO4	0.030	C.C47	0.064	C.C94	0.047
		Matrix gas saturation, decimal	K31.0	0.305	C 471	0.640	C 897	0.473
		Formation volume factor, Bg	161	213	302 C 169	397 C 498	470 C 804	304
		Recovery efficiency, decimal	0.007	0.047				0.224 4.450
		Condensate Yidid, barrels/MMscf	C 805	1.275	3 435	9 163 7 400 044	14.316	
		Condensate, barre s	28,900	278,003	1,490 848	7,186,644	50,152,446	3,078,830
		Prospective GGIP, cubic feet Prospective gross ultimate recovery, cubic feet	319,550,338,105 6 632,877 663	1,265,535,829,914 108,568 463,970	2,691 085,306 115 443,101,183,709	5,401 834,105 883 1,590 177,670 754	16,883 546,627 416 8,292 767,792 249	3,147,312,057,976 691,808,156,795

Prospect	Potential Target	Parameter	P ₁₀₀	P_{gg}	P ₅₀	P ₁₀	P _o	Mean
•								
Gainsberough/ seekingham/Corringham/Glentwor	n KI4	Productive area, acres	2.682	5,96h	7 868	12,089	17,631	8,279
		Productive area isculare kilometers	10.9 527.71	20 5 S13 45	31.9 1 178 95	48.9 1.521.49	71.4 2.264.48	33.5 1,203.04
		Net shale this creas, teet Net shale thickness, meters	191.32	278.41	1 175 95 359,33	463.73	2254 45 887.13	386.67
		Sorbed gas storage capacity, sot/for	0.1/3	14 108	49.41 S	91.887	197 £81	500.07 51 8S5
		Scribed gas storage capacity, cubic meters/ton	0.00484	0.99503	1,38368	2,57284	5,59229	459C6
		Shale density, group or finarouble meter	2 4/9	2.630	7 ±65	2.5(20-	2 659	2 h65
		Matrix porosity decime	0.007	0.032	0.050	C C69	C 100	0.050
		Matrix gas saturation, dec mai	0.00	0.308	0 495	0.688	0.897	II 488
		Formation volume factor, 5g	100	213	302	397	479	904
		Recovery efficiency, decimal	0.007	0.048	C 169	C 498	0 802	11 224
		Condensate Yield, barrels/MMscf	0.800	277	3 440	9 179	14,340	4,478
		Condensate, barrels	43,S81	428,866	2,474.237	12 486 S13	148 956,531	4,994 /E/
		Prospective OGIP, cubic feet	615,149,179,437	2 210,009.002,832	4,448 132,442 057	9,600 977,690 438	21,326 659,806 101	5,070.400,748.763
		Prospective gross ultimate recovery, cubic feet	19,754,175,833	184,554 203,550	748,336,51E,636	2,557 SSS,878 211	15,796 678,372 497	1,115,331,081,937
West Everton	PEDL139	Productive area lacres	2 591	7,060	10,989	10,808	24,661	11,503
		Productive arour square kilometers	10.5	20 8	44.5	68.4	99.8	46.8
		Net shale thickness, feet	740.60	760.92	1,054.76	1,748.69	2,765.12	1,087 03
		Not shalp thickness, molers	134.29	233,74	321.48	441.54	748.28	331.49
		Sorped gee storage capacity, sof/ton	0.132	14.137	49,392	168.18	179,059	51.881
		Scroed gas storage capacity, cubic motors/ton	0.00369	0.39583	1.30297	2,57278	5,01361	1,45268
		Shale density, g/color tons/cubic meter	2 477	2.530	2 565	2 000	2 654	2,505
		Matrix porosity docima	C CO7	0.032	C C49	C C67	0.098	0.050
		Matrix gas saturation, depimal	0 150	0.309	0.501	0.697	C 893	0.503
		Formation volume factor, Eg	161	213	302	397	480	304
		Recovery efficiency, decimal	0.006	0.047	C 169	C 497	0.803	0.224
		Condensate Yick, barrels/MMscf	C 802	1.273	3 438	5 173	14 362	4,458
		Condensate, barre's	82,770	509,931	3,003 776	15,028 224	86,157 052	6,392,394
		Prespective CGIP, cubic feet	556,230,773,233	2,597,820,074,730	5,508 825,027 159	11,439 062,706 860	31,270 588,756 391	6,430,468,395,047
		Prospective gross ultimate recovery, cubic feet	16,808,326,326	220,238 227,030	918,442,910,407	3,432 700,707 765	14,150 176,694 110	1,433,886,850,905
Evenor/Springs Road	PEDL140	Productive area, acres	5 233	10,010	15 567	23 941	34 709	18.973
		Productive area, square kilometers	21.2	4II h	63.0	96.9	1411.5	66 B
		Natisha aith okness, feet	441.33	767.59	1.054.44	1.448.22	2.271.29	1,087 54
		Net shale thic meas, meters	134 51	233.95	321.38	441.39	SS2 26	331.47
		Scroed gas storage capacity, actiton	C 163	14.194	49.425	91 875	158.237	51.601
		Scroed gas storage capacity, cubic metersition	0.00457	II 38744	1 38391	2 57949	4 43064	1 45211
		Shale density, g/color tons/cubic meter	2 479	2.530	2 565	2 600	2 660	2,565
		Matrix pomeity decima	0.000	0.0311	C C48	0.067	0 095	11 1149
		Matrix gas saturation, decimal	0.153	0.309	0.501	0.697	0.800	0.503
		Lormation volume tactor, sig	169	212	303	397	479	304
		Recovery efficiency, decimal	0.005	0.047	C 169	C 499	0.803	0.224
		Condensate Yield, barrels/MMscf	0.892	1.276	3 436	S 179	14 388	4 923
		Condensate, barrels	48 486	808,915	4,206 943	22,047.712	121,219 531	9,168,249
		Prospective CGIP, cubic feet Prospective gross ultimate recovery, cubic feet	976,884,480,702 90,719,076,669	3,547,935,430,031 294,819 530,574	7,815 528,311 548 1,270 238,373 020	15,186 764,114 415 4,625 498,790 929	41,552,247,833,353 16,025,072,158,719	8,952,917,810,748 2,028,567,289,278
Ranskill	PEGL012	Productive area, acres	1 193	2,334	3 628	5 578	8 145	3.016
		Productive area, square kilometers	4.8	9.7	14.7	22.6	33.0	15.4
		Not shalp thickness, feet	188.72	378.00	468.31	851.83	1.071.33	404 37
		Net shale thickness, meters	67.52	102.43	142.73	198.67	326.53	147 63
		Scrood gas storage cooscily, sof/ton	0.055	14.148	46 370	92 014	159 927	51.053
		Sorped gas storage capacity, dubic meters/ton	0.00155	0.38639	1.38235	2,57640	4.47795	1.45188
		Shale density, g/cc cr tons/cubic meter	2 469	2,530	2 565	2 600	2 653	2.565
		Matrix porosity idecima	0.009	0.030	C C44	0.059	0.087	0.045
		Matrix gas saturation, dec mat	0.018	0.115	0.354	0 632	C 891	0.367
		Formation valume factor, Bg	163	213	302	397	478	304
		Recevery efficiency, decimal	C CO7	0.040	0.169	C 499	C 802	0.224
		Condensate Yield, barrels/MMsof	0.804	1.275	3 436	8 167	14 335	4.387
		Condensate, barrols	4 012	58,702	330 281	1,786 415	10,986,480	740,350
		Prospective CCIP, public feet	24 871,117 084	239,658,105,539	618 (62,916 769)	1,407 931,296 943	3,526 308,204 164	742,908,435,312
		Prospective gross ultimate recovery, cubic led.	3 285,686 373	21,678,068,230	05 999,702 055	377 778,583 478	1,576 080,786 489	180,749,949,090

	Potential							
Prospect	Target	Parameter	P ₁₀₀	P ₉₀	P ₅₀	P ₁₀	Po	Mean
I ound	P 01200	Productive area, acres	3,749	8,059	19,531	18,255	27,558	13 182
		Productive area isculare kild meters	- 6.2	32 8	50.7	77.9	113.1	53.3
		Net shale thic meas, feet	179.84	335 31	468.33	551.72	1.062.27	484.31
		Natisha aith pkness, meters	62.07	102.50	142.74	198.63	320.72	147.61
		Sorbed gas storage capacity, softfin	0.068	14 092	49 4011	91 531	174 962	51 876
		Sorbed gas storage capacity, cubic meters/fon	0.00190	0 39458	1.38319	2.57408	4.99895	1.45262
		Shale density, gros or fons/cubic meter	2 480	2.530	2 565	2 600	2 654	2 hf6
		Matrix porosity, decima	0.009	0.030	C.C44	0.059	0.083	0.045
		Matrix gas saturation, decimal	0.156	0.313	0.4/1	0.639	0.852	11.472
		Formation volume factor, 5g	161	213	302	397	477	304
		Recovery efficiency, decimal	0 005	0.048	0 169	0.498	0.802	11 224
		Condensate Yield, barrels/MMscf	0 803 22,588	1.275	3 440	9 180 6,893 772	14,359 38 767 635	4,925
		Condensate, barrels		255,263	1,435 405			2,813,068 0,500,454,005,700
		Prospective (DGIP, ouble feet Prospective gross ultimate recovery, cubic feet	165,418,710,275 S 509,140,140	1,202,745,124,735 102,492,900,553	2,542 501,074 443 429,642,418,657	5,090 783,680 201 1,481 640,922 104	17,101 633,786 193 7,028 862,785 754	2,929.124,295.730 658 428,218 471
Cold Harworth	PEDLO	Productive area, acres	4 927	9,650	14 890	23 C38	33 614	15,772
		Productive area isquare kilometers	18.8	39.1	60.7	93.2	135.6	63.8
		Net shale thickness, feet	102.62	201.58	303.00	464.53	1,041.00	318.77
		Not shalp thickness, motors	31.28	61.44	52.35	138.53	317.28	97.16
		Sorped gee storage capacity, sof/ton	0.173	14.192	49.382	91.950	150,622	51.849
		Scroed gas storage capacity, cubic molers/ton	0.00485	0.39737	1,30268	2,57460	4.30261	1.45177
		Shale density, g/color tons/oubid meter	2 463	2.530	2 565	2 000	2 053	2,505
		Matrix porosity docime	0.010	0.030	C C44	0.059	0.082	0.045
		Matrix gas saturation, dep mal	0.154	0.308	C 456	0.610	0.850	0.467
		Formation volume fector, Eg	161	212	302	397	480	304
		Recovery efficiency, decimal	0.005	0.048	C 169	C 498	C 801	0.224
		Condensate Yidic, barrels/MMscf	C 802	1,273	3 436	9 157	14 332	4.349
		Condensate, barre s	20,716	188,930	1,102 975	5,280 052	34,603 435	2,212,361
		Prospective GGIP, cubic feet	272,210,614,652	078,773 489,380	1,988 219,418 615	4,121 588,823 087	10,201 805,132 571	2,280,980,197,268
		Prospective gross ultimate recovery, cubic feet	0 435,307 869	71,465,940,818	322,783,492 046	1,102 795,938 746	4,234 438,630 463	508,961,181 217
Armthorpe	PED_109	Productive area, acres	2 142	1,387	0.815	10 460	16 201	7,170
		Productive aroa, square kilometers	8.7	17.0	27.6	42.4	61.5	29.0
		Net shale thickness, feet	918.96	1 354,20	1,762.69	2,270.09	4,083.69	1,790 47
		Not shalo thickness, meters	280.08 0.014	412,74 14,169	534.28 48.441	891,89 91,944	1.244.71	545.71
		Sorped gas storage capacity, sof/ton	0.00041	0,39674	1,30352	2,57442	157,314 4,40479	51.868 1.45204
		Scrood gas storage capacity, cubic motors/ton	2.30041	2,530	1,30352	2,57442	4.40478 2.671	.45204
		Shale density, g/cd or tons/cubic meter Matrix porosity idecima	C CO3	0.030	C C48	0 093	C 095	2.965 0.048
		Matrix ges saturation, decimal	C 153	0.339	0.040	C 097	C 862	0.503
		Formation volume factor. 3g	161	212	302	397	478	304
		Recovery efficiency, decimal	0.007	0.048	C 169	C 468	C 801	0.224
		Condensate Yield, berrels/MMscf	0 805	1.278	3 438	9 175	14 312	4,254
		Condensate, barre's	09.612	577,280	3,188 455	13,417,848	61,478 866	5,661,181
		Prospective CGIP, cubic feet Prospective gross ultimate recovery, cubic feet	828,625,321,641 27 275,586 338	2,768,850,850,791 225,095,816,645	5,454 252,857 069 926,161,796 881	10,977 297,927 030 3,080 320,047 444	30,456 357,307 069 12,482 678,158 161	6,394,262,220,839 1,401,378,369,288
Hemsworth	PEDL273	Productive area, acres	7 035	13,858	21 545	93 120	48 074	22,865
		Productive area, square kilometers	28.5	58.1	872	134.9	194.5	81.7
		Natisha a thickness, feet	294.59	481.37	869.32	929.58	1,489,35	691.70
		Net shale thickness, meters	89 78	146 71	204 99	283.32	453 93	210.82
		Scroed gas storage capacity, sof/ton	C 129	14.143	49 357	91 963	192,539	51.888
		Scroed gas storage capacity, cubic metersition	0.00361	H 38691	1 38198	2 57495	5 39107	1 45288
		Shale density, g/color tons/bubic meter	2 477	2.530	2 565	2 600	2 652	2,565
		Matrix pornsity, decima	0.006	0.030	0.046	0.062	C C87	II II46
		Matrix gas saturation, decimal	0.151	0.308	C 481	C 660	C 884	0.483
		Lormation volume tactor, lig	161	213	302	387	4/8	304
		Recovery efficiency, decimal	0.006	0.048	C 169	C 498	0.803	0.224
		Condensate Yield, barrels/MMscf	0.801	1,273	3 438	S 175	14 316	4 484
		Condensate, barrels	51 314	592,033	3,582 637	17,594 962	135,390 792	7,514.017
		Prospective CGIP, cubic feet	549,812,441,628	2,989,841,556,830	6,535 188,517 808	13,005 943,346 553	33,65E 142,493 S00	7,433,800,767,739
		Prospective gross ultimate recovery, cubic feet	23 989,616 680	247,009,903,617	1,050 864,599 299	3,689 137,593 761	20,341 689,516 795	1,875,797,475,833

	Potential							
Prospect	Target	Parameter	P ₁₀₀	P90	P ₅₀	P ₁₀	P ₀	Mean
Willingham by Stow	P 01316	Productive area, acres	3,839	7,860	19,995	18,789	27.291	12 859
, ,		Productive area isculare kilometers	- 6.5	31.6	49.5	78.0	110.2	52.0
		Net shale thickness, feet	351.42	£39 BC	/22.65	966 59	1.559 /2	741.83
		Natisha aith okness, meters	107.11	164.52	223.26	294.60	475.38	226.10
		Scribed gas storage capacity, solfton	0.091	14 123	49 387	92 C13	157.810	51 863
		Sorbed gas storage capacity, cubic meters/fon	0.00254	0.39544	1.38284	2.57637	4.69867	1,45216
		Shale density, group or tons/outric meter	2 468	2.530	2 565	2 600	2.657	2.565
		Matrix porosity decima	0.005	0.030	C C47	C CG4	0.092	0.047
		Matrix gas saturation, decimal	0.153	0.399	0.481	0.659	C 895	II 483
		Formation volume factor, Eg	161	213	303	397	478	304
		Recovery efficiency, decimal	0.005	0.048	0.169	C 498	0.891	11 224
		Condensate Yield, barrels/MMscf	0.804	1.273	3 435	9 182	14,396	4.992
		Condensate, barreis	26,584	389,623	2,248 674	10.807.804	117.234,837	4,497,412
		Prospective OGIP, cubic feet	455,547,653,478	1 903,712,065,190	4,088 464,947 181	7,955 834,658 893	20,512 670,993 092	4,599,423,501,027
		Prospective gross ultimate recovery, cubic feet	13,976,771,632	165,050,520,179	670,620,755,812	2,323,669,251,628	9,198,821,592,824	1,023 949,451,572
Rawmarsh	P 01305	Productive area, acres	£ 265	10,114	15,717	24,159	34,518	15,536
		Productive area isculare kild meters	21.3	40 9	63.6	97.8	141.3	68.9
		Net shale thic mess, feet	372 06	697.59	818.81	1,121.16	1,779.60	844 13
		Net shale thickness, meters	98.16	182.14	249.56	941.71	542.40	257.28
		Scribed gas storage capacity, softing	C C86	14 148	48 413	91.529	1/9 423	51 875
		Sorbed gas storage capacity, cubic meteration	0.00242	0.39614	1,38358	2.57401	5.02384	1.45261
		Shale density, gres or fons/cubic meter	2.477	2.530	2 :65	2 600	2 661	2.565
		Matrix porosity decime	0.006	0.032	C C48	C C64	C C89	0.048
		Matrix gas saturation, dec mai	0.155	0.319	0.495	0.679	0.890	II 487
		Formation volume factor, 5g	161	213	302	397	478	304
		Recovery efficiency identifial	0.005	0.048	0 169	0.497	0.895	11 224
		Condensate Yield, barrels/MMsof	0 802	277	3 437	9 184	14.376	4,430
		Condensate, barrels	90,240	569,785	3,253 363	15 976 745	137 873,185	7,035,359
		Prospective IDGIP, cubic feet	1,046 579,650 947	2,837,819,727,579	5,978 377,940 800	2,292 583,101 962	33,990 259,499 843	6,998,902,154,900
		Prospective gross ultimate recovery, dubic feet	15,365,824 714	232,184 1119,379	1,018 767,722 098	3,684 635,898 657	16,054 310,681 653	1,588,435,059,051
Welton/Nettleham/Scampton North/Stainton	P_178 (W)	Productive area, acres	2 311	5,247	8 030	14 C24	21 286	9.206
	• •	Productive arou square kilometers	9.4	21 2	34.9	56.8	AS 1	37.3
		Net shale thickness, feet	58.24	87.60	115.19	161.39	241.74	117.88
		Not shalp thickness, motors	17.75	28.72	35.11	46.14	73,68	35.63
		Sorped ge≘ storage capacity, sof/ton	0.159	14.088	48.275	91.978	157.215	51,850
		Scroed gas storage capacity, cubic molers/ton	0.00444	0.39447	1.30249	2,57537	4.40202	1,45180
		Shale density, g/color tons/oubic meter	2 471	2.530	2 565	2 000	2 652	2,505
		Matrix porosity decima	C C12	0.030	C C42	0.055	0.650	0.043
		Matrix gas saturation, dep mal	0.156	0.313	0.466	0.020	C 853	0.407
		Formation volume factor, 3g	161	213	302	397	479	304
		Recovery efficiency, decimal	0.007	0.047	0 169	C 497	0.803	0.224
		Condensate Yicic, barrels/MMscf	0.803	1,274	3 439	5 184	14 398	4.487
		Condensate, barre s	3 338	36,249	234,860	1,090 665	8,006 220	492 313
		Prospective GGIP, cubic feet	46,203,506,050	200,335 069,764	410,763,726,476	852,768,904,762	2,106 959,119 265	470,956,120,303
		Prospective gross ultimate recovery, cubic feet	920,914,865	15,529,948,722	71 217,608 149	282,705,784 624	1,080 063,158 091	107,482,648,814
East Glentworth	P_179 (EG)	Productive area, acres	139	256	398	608	885	416
	,,	Productive area, square kilometers	2.5	111	15	25	35	- 7
		Natisha aith oknass, faat	57.°2	87.62	115.19	151.41	253.70	117.89
		Net shale thickness imeters	1/ 41	26.71	35.11	46.15	11.32	3E S3
		Scroed gas storage capacity, sofiton	0.012	14.148	49 398	92 030	173.214	51.870
		Scroed gas storage capacity, cubic metersition	2 200 CC 2	II 35614	1 38300	2 57685	4 84899	1 45236
		Shale density, g/color tons/cubic meter	2 480	2.530	2 565	2 600	2 652	2,565
		Matrix comsity decima	0 012	0.030	0.042	C C55	G G/5	11 1143
		Matrix gas saturation, decimal	0.156	0.313	C 406	C 620	C 856	0.467
		Lormation volume factor, ig	160	912	302	397	4/8	304
		Recovery efficiency, decimal	0.006	0.047	0.02 0.169	097 C 499	4/5 C 805	0.224
			0.005	0.047 1.27h	0 169 3 438	C 499 S 184	0 805 14 393	0.224 4.230
		Condensate Yield, barrels/MMscf	122	1,919	3 455 11 156	5164 50013	14 393 321 565	20,856
		Condensate, barrels Prospective OSIF, cubic feet	2 105 340 767	9,978,479,562	11 105 15 809,401 586	36 700 112 034	321 005 105 178,104 710	20,566 21,537,018,731
		•						
		Prospective gross ultimate recovery, cubic feet	123.946,221	695 709,750	3 259,748 790	11 571,672 170	41 509,619 819	4,883,671,271

	Potential							
Prospect	Target	Parameter	P ₁₀₀	Pgq	P ₅₀	P10	P ₀	Mean
Bothamasii	MTE	Productive area, acres	413	/84	1,919	1,8/1	2,729	1,281
		Productive area isquare kilometers	1.7	32	4.9	7,6	1.0	5.2
		Net shale thic meas, feet	64 50	125.07	209 011	318.85	569 72	213 79
		Net shale thickness, Heters	19.66	38,12	60.96	97.18	204.12	85.16
		Scribed gas storage capacity, softing	9.167	14 168	49.411	92 047	174 325	51.873
		Scribed gas storage capacity, cubic meters/fon	0.00468	0.39675	1,38351	2.57733	4.98111	1.45246
		Shale density, gres or finis/cubic meter	2.475	2 530	2 565	2 690	2 655	2 hft6
		Matrix corosity, decime	0.006	0.030	C.C43	0.057	0.077	0 043
		Matrix cas saturation, decimal	0.177	0.351	0.490	0.630	0.896	II 481
		Formation volume factor, 5g	160	212	303	397	478	304
		Recovery efficiency, decimal	0.006	0.048	0.169	0.499	0.800	11 224
		Condensate Yield, barrels/MMscf	0.803	279	3,438	9,167	14,359	4 277
		Condensate, pame s	825	11,186	58,6911	274,032	1.497.175	118 465
		Prospective OGIP, cubic feet	13,792,420,460	45,397,769,569	110,861.474,405	227,325,191,679	625,370,945,334	126 728,737 543
		Prospective gross ultimate recovery, cubic feet	621,310,688	4,903,514,389	17,837,483,095	53,399,79E 783	278,891,878,636	27,927,927,537
South everton	MI /	Productive area, acres	399	ase	1,346	2,070	2,899	1 415
		Productive area isculare kilometers	1.6	9.5	5.4	9.4	⁻ 2.1	δ.7
		Net shale thic meas, feet	69.25	148 85	247.64	419.89	971.80	268 02
		Net shale thickness, meters	21.1	45.38	75.48	125.23	296.19	81.69
		Scribed gas storage capacity, action	0.036	14 143	49 402	91 \$84	159 608	51 854
		Scribed gas storage capacity, cubic meters/fon	0.00100	0.39801	1,38328	2.57684	4,48904	1.45192
		Shale density, gros or fons/cubic meter	2 465	2.530	2 565	2 600	2 663	2.565
		Matrix corosity, decime	0.007	0.030	C.C46	0.003	0.089	0 047
		Matrix gas saturation, decimal	0.152	0.394	0.466	0.630	0.866	0.467
		Formation volume factor, 5g	160	213	303	397	490	304
		Recovery efficiency, decimal	0.007	0.048	0 169	C 498	0.805	11 224
		Condensate Yield, barrels/MMscf	0.800	1.277	3.437	9.184	14.314	4 212
		Condensate, pame s	425	15,757	86,485	388,418	3 415 167	167 170
		Prospective OGIP, cubic feet	12,151,593,877	63,552 064,361	146,939,429,242	328,143,770,953	978.815.178.041	177 494,960 002
		Prospective gross ultimate recovery, cubic feet	402,044,752	5,588,956,971	23,331,386,594	90,652,302 755	384,072,243,395	39 551,195,848
West Beckingham	P_178	Productive area lacres	â0	***	232	257	621	244
		Productive area square diameters	0.3	C 8	0.9	1.4	2.1	1.0
		Net shale thickness, feet	260.39	488.93	718.48	1.065,76	1 893.69	761.79
		Not shalo thickness, motors	73.38	140.02	218.90	321.70	577.28	229.13
		Sorbed gesistorage capacity, sof/ton	0.066	14,102	79,368	91.888	158,777	51 807
		Scribed gas storage capacity, cubic molers/ton	0.00184	0 36408	1,30230	2,57288	4.44575	1,45169
		Shale denaity, g/color tons/cubic meter	2.451	2.530	2.065	2,000	2.060	2 505
		Matrix porosity, docime	0.008	0.034	0.050	0.067	0.092	0.050
		Matrix cas saturation, decimal	0.159	0.317	0.501	0.039	0.866	0.502
		Formation volume factor, 3g	180	213	303	397	479	304
		Recovery efficiency, decimal	0.005	0.048	C 169	C 498	0.804	0.224
		Condensulo Yidic, barrels/MMsc*	008.0	1,275	3 438	9 157	14,361	4,386
		Condensate, same s	1,030	7,645	(4.314	228,330	1,301 122	93 847
		Prospective OGIP, cubic feet	15,220,842,167	37,391 039,755	01,695,796,264	171,297,807,530	545,028,536,104	95 578,297.012
		Prospective gross ultimate recovery, cubic feet	234,358,080	2,614,903,157	14,312,003,063	77,804,610 122	255,802,886,842	21,397,641,747
Charlton	PECL188	Productive area lacres	3,734	7,077	10,932	10.913	24.660	11 564
= ::= :==::		Productive area iscuare kilometers	′h1	28.5	44.5	68.4	99.6	46.8
		Natisha a thickness, feet	74.89	124,38	174.18	243.91	389.88	180.33
		Net shale thickness, meters	22.83	37.91	£3 09	74.34	121.88	h4 S6
		Sorbed gas storage capacity, sof/ton	0.085	7.868	27.472	51.137	90.413	28 819
		Sorbed gas storage capacity, cubic meteration	0.003	11 22032	0.78822	1.43183	253155	0.80982
		Shale density, g/cold-tons/cubic meter	2.601	2.640	2,655	2,670	2.692	2,855
		Matrix pomaity, decima	0.007	0.030	0 050	0.070	0.102	2.000 II IIE0
		Matrix gas saturation, decimal	0.278	0.457	C 573	C 689	0.856	0.573
			161	0.#37 213	302	397	0 805 4/8	304
		Lormation volume factor, sig	151 0.006	213 0.047	39.7 C 169	397 C 498	4/8 C 804	
		Recovery efficiency, decimal						0.224
		Condensate Yield, harrels/MMscf	0.802	1979	3 441	S 1//	14 380	4 265
		Condensate, barre s	8,120	90,397	487,669	2,380 C10	19,742,897	348 582
		Prospective CX4P, cubic feet	101,872,511,840	412,530,538,418	881,629,153,525	1,718,284,593,195	3,858 \$95,476 188	995 906,194 227
		Prospective gross ultimate recovery, cubic feet	3,873,700 037	35,899 102,658	142,735.294,026	502,439.154,417	1,591 272,626 902	222 444,619 486

	Potential							
Prospect	Target	Parameter	P ₁₀₀	P90	P ₅₀	P ₁₀	Po	Mean
Upton	P 01189	Productive area, acres	3,128	7,068	10,594	16,885	24,652	11.563
		Productive area isculare kild Heters	12.7	28.8	44.5	68.3	99.4	46.8
		Net shale thic meas, feet	317.18	488 55	554.55	875.25	1,350.88	672.00
		Natisha aith pkness, meters	96.67	148.91	199.50	267.07	411.73	204.81
		Scribed gas storage capacity, actifon	0.009	7.851	27.470	51 139	86 024	28.817
		Sorbed gas storage capacity, cubic meteration	0.00024	0.21983	0.78918	1.43190	2.40806	0.80869
		Shale density, gros or fons/cubic meter	2.618	2 640	2 655	2.670	2 695	2.965
		Matrix porosity decima	0.002	0.030	0.050	0.070	0 102	0.050
		Matrix gas saturation, dec mal	0.290	0.480	0 581	0.683	0.828	11.581
		Formation volume factor, 5g	161	212	303	397	479	304
		Recovery efficiency, decimal	0.006	0.048	0.169	0.498	0.894	11 224
		Condensate Yield, barrels/MMscf	0.803	1.277	3 437	9 158	14,377	4,483
		Condensate, barrels	38,934	334,012	1,787,725	9,194,399	79,516,208	3,894 762
		Prospective IDGIP, cubic feet	416,840,195,737	1,562,685,905,018	3,314 939,399 953	6,529 041,348 626	6,608 209,996 049	3,812.191,777.272
		Prospective gross ultimate recovery, cubic feet	16,262,507,885	128,750 126,482	546,350,146,825	1,894 030,695 039	9,154,344,711,123	848 /\$4,617 /08
Four Oaks /Doe Green	PED_145	Productive area, acres	2 300	5,250	8 171	12 671	18 165	8,596
		Productive arou, square kilometers	9.3	21 3	33.1	50.9	73.6	34.8
		Net shale thickness, feet	283.74	435.69	508.92	742.66	1,120.33	581.39
		Not shalo thickness, meters	89.53	132,70	173.40	226.35	344.50	177.20
		Sorbed gas storage capacity, sof/ton	C C33	7.884	27 462	51 095	80 093	28.812
			0.00092	0.22075	0.78892	1.43093	2.42741	0.80874
		Scrood gas storage capacity, cubic molers/ton	2 015	2.640	2 055	2 073	2.42741	2.965
		Shale density, g/color tons/b, big meter	C C15	0.034	2 055 C C47	0.060	2 699 C 679	2.565 0.047
		Matrix porosity docima						
		Matrix gas saturation, depmal	0.611	0.574	0.011	0.648	0.711	0.914
		Formation volume factor, Bg	161	213	303	397	478	304
		Recovery efficiency, decimal	0.007	0.048	C 169	C 468	0.803	0.224
		Condensate Yield, berrels/MMscf	C 805	1.278	3 443	9 184	14 369	4.509
		Condensate, barre's	38 023	222,840	1,189 083	5,848 641	26,711.466	2,459,078
		Prospective GGIP, cubic feet	281,456,042,001	1.101,582,554,258	2,149 276,934 095	4,041 369,300 504	10,000 639,300 639	2,434.949,108.760
		Prospective gross ultimate recovery, cubic feet	21 488,982 671	87,700,080,653	301 497,548 451	1,208 033,528 395	3,970 239,528 444	545 311,688,449
Elesmere Port	PED_184	Productive area, sores	8,610	20,669	32 157	78 493	71.718	33,835
		Productive area, square kilometers	38.9	83.8	130.1	200.3	290.2	136.9
		Net shale thickness, feet	87.58	164.22	326.14	547.18	1,200.11	354 14
		Not shalp thickness, motors	26.69	59.20	99.40	166.77	365.78	107 94
		Scroed gas storage capacity, sof/ton	0.042	7.845	27 449	51 070	88 976	28.818
		Surped gas storage capacity, cubic moters/ton	0.00118	0.21987	0.78858	1,42597	2,40134	0.80889
		Shale density, globior tons/b, big meter	2 617	2.640	2 055	2 070	2 093	2.965
		Matrix porosity decime	0.000	0.027	C C49	0.070	C 108	0.049
		Matrix gas saturation, depimel	0.211	0.339	C 429	0.619	0.657	0.729
		Formation volume factor, Eg	161	213	302	397	475	304
		Recovery efficiency, decimal	0.006	0.048	0 169	C 498	0.800	0.224
		Condensate Yield, barrels/MVIscf	C 804	1,274	3 443	6 173	14 327	4,575
		Condensate, barre's	20 598	349,635	2,353 228	10,837,602	92,156 788	4,641,114
		Prespective CGIP, cubic feet	104,084,872,820	1,587,208,154,293	3,751 224,687 271	8,307 416,548 658	25,689 916,555 004	4,583,731,319,865
		Prospective gross ultimate recovery, cubic feet	14 319,771 682	130,408,327,313	653 167,284 014	2,304 011,296 910	9,753 649,254 504	1,014,504,522,981
Inca Marshes	PEC_190	Productive area, spres	3 499	6,607	10 274	15 792	22 896	10.81
mee merene		Productive area isquare kilometers	14.2	25 /	41.5	63.9	92.7	43.8
		Nat sha e th ckness, feet	951.55	639,32	716.36	949.63	1,480.74	794 C2
		Net shale thickness i meters	107.15	164 38	218.34	289 43	4e1 31	223 72
		Soroed gas storage capacity, soffton	0.016	7,899	27.465	51 C85	90 261	28.816
			0.01046	7.859 H 22089	27 465	1 43039	90 261 2 52731	26.616 0.80586
		Sorbed gas storage capacity, dubic meteration	2 615	2,640	2 655	1 4/1039 2 670	2 52731 2 699	0 aunas 2,865
		Shale density, g/color tons/bubic meter		2.640 0.03H	2 005 0 050		2 099 0 099	
		Matrix pornatty decima	0 001			0.070		II IIE0
		Matrix gas saturation, dec mal	C 283	0.408	C 479	0.553	0.669	0.479
		Lormation volume factor, sig	160	213	302	397	4/8	304
		Recovery efficiency, decimal	0.006	0.048	C 169	C 499	0.801	0.224
		Condensate Melo, barrels/MMscf	0.895	12/3	3 437	\$ 157	14 335	4 382
		Condensate, barrels	29 769	297,490	1,649 526	7,780 505	41,432 474	3,318.415
		Prospective OGIP, cubic test	376 507,477 579	1,489,082,276,194	3,001.202,251.424	5,698 187,622 705	13,350 549,906 807	3,354,4118,755,937
		Prospective gross ultimate recovery, cubic feet	16 599,304 854	116,539,753,835	502 539,351 462	1,700 005,124 078	6,958 900,698 577	755.518,704.034

		Potential							
	Prospect	Target	Parameter	P ₁₀₀	P ₉₀	P ₅₀	P ₁₀	P ₀	Mean
Parkside / rla∽		P DHS3	Productive area, acres	19,633	20,949	39,672	50,099	72,685	34 263
			Productive area isculars kild Teters	43.0	94 8	131.9	202.7	294.1	139.7
			Net shale thic meas, feet	149 / /	9411.94	348 51	504.34	936.25	353 45
			Natisha aith pkness, meters	42.90	73.44	106.22	153.72	285.35	110.77
			Scribed gas storage capacity, action	0.039	7.881	27 460	51 G3B	86 445	28 815
			Sorbed gas storage capacity, cubic meters/ton	0.00109	0.22068	0.78888	1.42906	2.42048	0.80883
			Shale density, gros or fons/outric meter	2.613	2 64Ⅱ	2 655	2.670	2 692	2 965
			Matrix porosity decima	0.009	0.030	C C45	0.000	C C83	0.045
			Matrix gas saturation, decimal	0.406	0.484	0 638	C E93	0.670	II 538
			Formation volume factor, 5g Recovery efficiency, decimal	180 0.004	213 0.048	302 0 169	397 0.497	478 0.801	904 11 224
			Condensate Yield, barrels/MMscf	0 004 0 802	1.278	3 437	0.497 9.186	14,374	4,299
			Condensate the c, beneath macri	48,333 48,333	.210 482,761	2,526.819	12 1/5 S14	55,813 794	4,971.381
			Prospective OGIP, cubic feet	569,207.690,024	2.913,092.742,764	4,629 675,549 364	9,102 471,225 650	9,288 845,011 399	5,264,279,438,904
			Prospective gross ultimate recovery, cubic feet	22,849,712,172	153,711 456,789	753,239,693,123	2,672 374,727 522	7,922 837,844 634	1,155,423,433,971
Rurforwined		1 XI 2/3	Productive area, acres	1 753	3,391	E 278	8 115	11,810	h,her
			Productive area isculars kilometers	7.1	19 7	21.4	32.8	47.8	22.5
			Net shale thic meas, feet	134 17	263 44	379.00	545.56	1,881.13	39E 02
			Natisha aith pkness, meters	40.89	80.29	115.51	166.28	929.51	120,40
			Scroed gas storage capacity, solfting	0.049	7.880	27 445	51 196	92.765	28 818
			Scroed gas storage capacity, cubic meteration	0.00111	0.22069	0.78845	1.49098	2.59743	0.80890
			Shale density, gros or fons/outric meter	2.617	2 6411	2 655	2.670	2.702	2.555
			Matrix porosity decime	0.004	0.031	C C45	C COO	C C82	0.045
			Matrix gas saturation, decimal	C 465	0.523	0 564	0.605	0.669	II 564
			Formation volume factor, 5g	160	219	302	397	479	904
			Recovery efficiency, decimal	0.004	0.048	0.169	0.498	0.805	11 224
			Condensate Yield, barrels/MMscf	0.804	1.277	3 438	9 176	14 389	4,968
			Condensate, barrels	2 161	87,360	485,S35	2,380 029	12,143 720	955,784
			Prospective IOGIP, cubic feet Prospective gross ultimate recovery, cubic feet	124,348,633,022 1 639,023 275	428,354 141,939 34,695,360,648	944,723,934,274 142,113,476,595	1,657 761,929 672 493 761,528 617	4,519 813,146 191 1,647 100,357 869	987,421,325,599 918,804,738,963
_					·	•	•		
Becon		PEDL147	Productive area, scres	2 806	6,291	8 784	16 050	21816	10,292
			Productive area, square kilometers	11.8 287.00	25.5	39.6 727.26	60.9	AB.7	41.6 757.82
			Netishale thickness, feet Notishalo thickness, motors	87.47	604.97 153.91	727.25 221.98	1,045.38 318.62	2,306.87 721.39	230,57
			Sorped gas storage capacity, sof/ton	0.002	7.865	27 454	510.52 510.37	88 401	28.817
			Scrood gas storage capacity, solitan Scrood gas storage capacity, cubic motors/ton	0.00005	0.22021	0.78870	1.42605	2,50323	0.80869
			Shale density, g/color tons/o, bid meter	2 616	2.640	2 055	2 073	2 091	2,965
			Matrix porosity decima	C CO1	0.030	C 055	0.000	C 121	0.055
			Matrix ge≘ saturation, dec mel	C 283	0.445	C 058	0 071	0.852	0.508
			Formation volume factor, Eg	160	213	302	397	479	304
			Recovery efficiency, decimal	0.006	0.047	C 169	C 498	0.802	0.224
			Condensate Yield, behals/MMscf	0.802	1.278	3 434	5 162	14 381	4,507
			Condensate, barre's	28 001	311,517	1,911 186	9,600 421	77,591 889	4,009,489
			Prospective CGIP, cub c feet	402,171,679,656	1.542,930.844,640	3,405 838,102 548	7,132 839,581 779	21,777 588,331 491	3,982,003,889,170
			Prospective gross ultimate recovery, cubic feet	10 656,04 (930	123,884,710,620	597 788,194 219	2,018 844,796 913	9,843 438,800 974	889 532,364,906
Sandbap-		PEC_295	Productive area, spres Productive area, square kilometers	7 206 29 4	14,152 57.3	21 994 89 0	93 803 136 8	49 21 3 199 1	29.128 83.6
			Natisha a thickness, feet	439.98	6-9,94	790.81	1.007.89	1,550,77	905 49
			Net shale thickness, rectars	134 10	188.9h	241.03	307.19	472.65	945 E0
			Sorbed gas storage capacity, sof/ton	0.000	7.859	27 450	51 050	09 560	28.826
			Sorbed gas storage capacity, some metersition	0 00168	11.21989	0.78861	1 42539	2 78769	9.89713
			Shale density, g/coldritons/bubic meter	26-5	2.640	2 655	2 670	2 693	2.865
			Matrix porneity decima	0 001	0.030	0 050	0.070	0 110	II IIEO
			Matrix gas saturation, dep mal	C 323	0.474	C 534	C 695	C 689	0.534
			Lormation volume factor, sig	161	213	302	397	4/8	304
			Recovery efficiency, decimal	0.006	0.048	C 169	C 497	C 801	0.224
			Condensate Field, barrels/MMscf	G 802	1.275	3 438	S 179	14 359	4 389
			Condensate, barrels	106 954	777,995	4,140 538	19,486 575	119,188 936	8,219.708
			Prospective OGIP, cubic feet	1,142 097,700 109	3,940,939,578,374	7,687,822,632,269	13,791,157,591,811	29,995,289,903,409	8,455,678,771,181
			Prospective gross ultimate recovery, cubic feet	97 557,423 546	908,058,902,057	1,273 899,809 810	4,121 999,879 867	19,977 156,041 756	1,867.010,120.996

	Potential							
Pros	pect Target	Parameter	P ₁₀₀	P90	P ₅₀	P ₁₀	P ₀	Mean
Crewe	P 01283	Productive area lacres	6,682	14,142	21,890	33,797	48,836	23 128
		Productive area isculare kilometers	28.6	57.2	89.0	138.9	197.6	93.6
		Net shale thic mess, feet	518.12	805.78	1 1158 88	1.381.16	2 122 59	1,983 19
		Natisha aith pkness, meters	157.92	245.59	322.73	424.01	846.94	330.14
		Scribed gas storage capacity, action	G 653	7.858	27 450	51 038	88 661	28 815
		Scribed gas storage capacity, cubic meters/fon	0.00064	0.22004	0.78859	1.49048	2.48253	0.80881
		Shale density, gred or fons/cubic meter	2.617	2 6411	2 655	2.670	2 693	2.965
		Matrix porosity decima	0.020	0.037	C C48	0.000	0.079	0.049
		Matrix gas saturation, dec mail	0.278	0.469	0 t/6	0.683	0.846	II 576
		Formation volume factor, 5g	161	213	302	397	478	304
		Recovery efficiency, decimal	0.003	0.048	0.169	C 498	0.803	11 224
		Condensate Yield, barrels/MMscf	0.805	1.275	3 437	9 164	14.363	4.503
		Condensate, barrels	45,343	1,1189,842	6,050,126	28,740,434	164,813,377	11,967,432
		Prospective OGIP, cubic feet	1,747,851,558,658	5 447,002,853,378	10.642,510.279 814	19,747 109,948 662	45,246 700,363 434	11,877,867,872,939
		Prospective gross ultimate recovery, cubic feet	34,308,452,660	435,158,622,832	1,753 611,101 185	6,220 145,050 894	17,347 \$72,072 \$74	2,657 796,899,719
Hemswell	P 00307	Productive area, acres	3 057	6,294	S 784	1E,037	21,866	10,282
		Productive area isculare kild meters	-2.4	25 5	39.6	60.9	89.9	41.6
		Net shale thic meas, feet	0.68	2.51	6.04	14 49	£9.91	7 f.4
		Net shale thickness, meters	0.21	0.77	1.84	4.42	18.26	2 33
		Scribed gas storage capacity, act/for	G 144	14 13h	49 435	91 884	191 753	51.852
		Sorbed gas storage capacity, cubic meteration	0.00402	0.39578	1.38419	2.57275	5.38907	1.45297
		Shale density, gros or fons/cubic meter	2.476	2.530	2 565	2 600	2 660	2.665
		Matrix porosity decima	0.000	0.012	C C40	C C75	C 127	0.042
		Matrix gas saturation, dec mai	0.202	0.350	C 454	0.658	0.713	11 454
		Formation volume factor, 5g	161	213	302	397	479	3C4
		Recovery efficiency, decimal	0.007	0.048	C 169	0.499	0.805	11 224
		Condensate Yield, barrels/MMscf	0.803	1.275	3 441	9 159	14.352	4,576
		Condensate, barreis	139	2,028	13,179	/3 894	1,410 573	34 194
		Prospective IDGIP, cubic feet	1 343,782 646	7,270.824,557	22,505,155 C17	70 655,499 310	280,323,195,446	33,383,18,488
		Prospective gross ultimate recovery, cubic feet	61,1%t 100	768 886,509	3 677,523 566	17 481,971 375	116,142,090 614	/_466,997_R/3
Femswell	PED_210	Productive area, acres	3 644	8,199	12 758	19 028	28 279	13,720
		Productive arou, square kilometers	14.7	33.2	51.6	79.4	114.8	54.3
		Net shale thickness, feet	131.21	229.80	316.92	/26.75	841.15	327.23
		Not sharp thickness, motors	39.99	70.08	96.59	133,11	256,37	99.74
		Sorbed gas storage capacity, sof/ton	C 13/1	14.178	48,389	91,813	156,914	51.854
		Scroed gas storage capacity, cubic molers/ton	0.00378	0.39697	1,30290	2,57356	4,38559	1,45191
		Shale density, g/color tons/cubic meter	2 472	2.530	2 565	2 000	2 653	2.505
		Matrix porosity decima	0.009	0.030	C C43	0.057	0.078	0.043
		Matrix gas saturation, decimal	C 153	0.305	C 466	0.030	0 859	0.407
		Formation volume factor, 3g	160	213	302	397	478	304
		Recovery efficiency, decimal	0 007	0.048	C 169	C 469	0.800	0.224
		Condensate Yide, barrels/MMscf	C 805	1,273	3 440	6 169	14 394	4,424
		Condensate, barre s	13,231	183,657	9/1,168	4,680 214	31,728 854	1,918,223
		Prospective GGIP, cub c feet	106,631,530,674	003,357 276,481	1,730 732,495 740	3,378 697,903 697	9,156 123,729 848	1,975,750,609,761
		Prospective gross ultimate recovery, cubic feet	0.282,008.395	69,170,042,674	288,303,684,451	1,000 (59,15) 277	3,490 293,670 376	433,577,738 883
Dun-olme	A_9	Productive area, acres	3-3	619	955	1 406	2 134	1.004
Duli Silile	A.3	Productive area iscuare kilometers	13	25	3 9	59	86	4 ′
		Natisha a thickness, feet	146.79	252.28	968.49	537.96	1.072.71	385.37
		Net shale thickness, meters	44 /4	/6 B9	112.31	163.95	376.94	117.45
			0.056	14.109	49 409	92 030	156 708	51.855
		Scroed gas storage capacity, sof/ton	0.006		1 38343	92 033 2 57685	4 38S45	21.600 1.451S5
		Scroed gas storage capacity, cubic meteration		H 38594	1 58345 2 565	2 57565 2 600	4 58545 2 665	1 45150 2,565
		Shale density, g/color tons/bubic meter	2 479	2.530				
		Matrix porosity decima	0.002	0.030	0.047	0.064	0.059	11 1147
		Matrix gas saturation, decimal	C 187	0.350	C 480	0.6-0	0.856	0.480
		Lormation volume factor, lig	161	213	302	397	4/8	304
		Recovery efficiency, decimal	0.006	0.048	C 169	C 499	0 802	0.224
		Condensate Yield, barrels/MMscf	0.803	1 274	3 440	\$ 172	14 330	4.860
		Condensate, barrels	1 169	16,719	86 329	495 685	7,642 912	194,820
		Prospective CGIP, cubic feet	17 392,385 861	75,098,771,632	153 978,441 074	317-723,930,858	953 735,607 437	185,181,813,573
		Prospective gross ultimate recovery, cubic feet	650,954,792	6,562,144,544	26 780,906 002	95 254,588 939	670 949,279 747	42,492,078,469

DEGOLYER AND MACNAUGHTON

5001 SPRING VALLEY ROAD SUITE 800 EAST DALLAS, TEXAS 75244

APPENDIX

to

REPORT

as of

JULY 31, 2016

on the

UNCONVENTIONAL PROSPECTIVE RESOURCES

attributable to

VARIOUS PROSPECTS

owned by

IGAS ENERGY PLC

in

VARIOUS LICENSE BLOCKS

UNITED KINGDOM

APPENDIX

The British Geological Survey (BGS) has estimated the potential original gas in place (OGIP) in its report titled "The Carboniferous Bowland Shale gas report: geology and resource estimation" (Andrews 2013). The methodology used in the BGS estimate includes the entirety of the area where source shale is present, thermally mature, and at a depth of adequate pressure. This OGIP estimation does not consider uncertainty in potential productive areas, rather it characterizes the area in whole. Estimates of OGIP analogous to the BGS methodology for IGas-owned properties are shown in Table A1.

The following table summarizes the key variables in the BGS estimates:

Variable	Uncertainty						
Gross Rock Volume/3–D Geological Model	The 2–D seismic data interpreted in the study area are of generally poor to moderate quality. A two-standard-deviation variation has been used on the gross rock volume, but it could be greater, resulting in a wider range of estimated gas volumes.						
Definition of Prospective Shale	The definition of net prospective shale used in this report could be optimistic; it includes a wide variety of shales, not just those with the highest gamma-log response (and hence highest total organic content (TOC)). This definition is influenced by the fact that the most suitable shales for current extraction techniques are not necessarily those with the highest TOC. Any approach that is more pessimistic would have the greatest effect on the lower Bowland-Hodder unit volumes.						
Definition of Gas Maturity	The use of Ro > 1.1 percent as the top of the gas window is possibly optimistic. It could be 1.4 percent, which would reduce the estimated gas volume.						
Shallow Depth Cut-Off	The use of 5,000 feet is based on USGS global screening criteria. If this were deeper, this would reduce the estimated gas volume.						
Gas-Filled Porosity of the Shale	The use of a mean of 3 percent is a conservative estimate. It could be greater, which would increase the estimated gas volume. The large range of values has a significant effect on the calculated gas-in-place figure (see Figures 3 and 4).						
Reservoir Pressure	The assumption that the shales are at hydrostatic pressure is conservative. Any amount of overpressure would increase the estimated gas volume.						
Adsorbed Gas Content	The use of 0.5 to 2.0 cubic meters per ton is lower than some U.S. analogues. Any increase in this range of values would increase the estimated gas volume.						
Bulk density	The average density of 2.6 grams per cubic centimeter is a robust estimate. If the density is higher, this will increase the estimated gas volume (and vice versa).						

Reference

Andrews, I.J. 2013. "The Carboniferous Bowland Shale gas study: geology and resource estimation." British Geological Survey for Department of Energy and Climate Change, London, UK.

The BGS report can be downloaded from the United Kingdom Government website here:

 $https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/226874/BGS_DECC_BowlandShaleGasReport_MAIN_REPORT.pdf$

TABLE A1
DETERMINISTIC ESTIMATE of GROSS GAS IN-PLACE using
BGS METHODOLOGY as of JULY 31, 2016 for IGAS in VARIOUS GAS PROSPECTS VARIOUS LICENSE BLOCKS UNITED KINGDOM

				Full License area	Mean Net Shale thickness	Mean Sorbed Gas Storage Capacity	Mean Shale Density	Mean Matrix Porosity	Mean Matrix Gas Saturation	Mean Formation Volume Factor	Deterministic Estimate of Gross Gas In-Place ¹
Prospect	Area	License	Blocks	(acres)	(ft)	(m³/ton)	(g/cc)	(decimal)	(decimal)	(ft³/ft³)	(10°ft°)
York	North A-S	PEDL146	\$E/54a, \$E/55, \$E/56	69,172	173.4	1.452	2,565	0.049	0.505	304	5,784
Normanby	North A-S	PL 162	\$E/81b.\$E/91a	10,374	14.1	1.452	2.565	0.056	0.462	304	74
Hemswell	North A-S	PEDL317	SK99a	9,633	7.6	1.453	2.565	0.042	0.454	304	31
Thorne	East Midlands	EXL 288	SE/51a B//C/D, SE/61a B/C/D, SE/61b. SE/61c	18,574	758.0	1.453	2,565	0.047	0.473	304	6,432
Gainsborough/Beckingham/Corringham/Glentworth	East Midlands	ML4	\$K/78c,d,\$K/79b,c.\$K/88a,d.\$K/89d,f,\$K/98a,\$K/99c	17,6 8 3	1.203.0	1.453	2.565	0.050	0.498	304	10,475
West Everton	East Midlands	PEDL139	SK/69	24,700	1,087.6	1.453	2.565	0.050	0.503	304	13,223
Everton/Springs Road	East Midlands	PEDL140	SK/78f, SK/79a	34,975	1.087.5	1.453	2.565	0.050	0.503	304	18,721
Ranskill	East Midlands	PEDL012	\$K/68a	8,151	484.4	1.452	2.565	0.045	0.367	304	1,495
Lound	East Midlands	PEDL200	\$K/58b, \$K/68b	28,158	484.3	1.453	2.565	0.045	0.472	304	6,009
Hemswell	East Midlands	PEDL210	SK/87f,SK/88h.i,SK/97a,SK/98f,g	28,667	327.2	1.452	2.565	0.043	0.467	304	4,049
Cold Hanworth	East Midlands	PE DL 6	SK/78a, SK/88c,,f,SK/98c,i, TF/8a	33,691	318.8	1.452	2.565	0.045	0.457	304	4,637
Armthorpe	East Midlands	PEDL169	SE/60a BELOW SMB	15,314	1.790.5	1.452	2.565	0.048	0.503	304	13,221
Hemsworth	East Midlands	PEDL273	\$E41e/\$E31c	47,844	691.7	1.453	2.565	0.046	0.483	304	15,116
Willingham by Stow	East Midlands	PEDL316	SK89e/SK88b/SK87c	27,442	741.8	1.452	2.565	0.047	0.483	304	9,428
Rawmarsh	East Midlands	PEDL305	SK59b/SK49	35,321	844.1	1.453	2.565	0.048	0.497	304	14,274
Dunholme	East Midlands	AL9	SK/97c,SK/98d,TF/7a,TF/8c	2,144	385.4	1.452	2.565	0.047	0.480	304	381
Welton/Nettleham/Scampton North/Stainton	East Midlands	PL179 (W)	TF/7b, TF/8b, \$K/97b,\$K/98e	25,540	117.9	1.452	2.565	0.043	0.467	304	1,280
East Glentworth	East Midlands	PL179 (EG)	SK/98b	889	117.9	1.452	2.565	0.043	0.467	304	45
Bothamsall	East Midlands	ML6	SK/67d	2,737	213.8	1.452	2.565	0.043	0.491	304	260
South Leverton	East Midlands	ML7	SK/77c,SK/78e,SK/87a,SK/88e	3,023	268.0	1.452	2.565	0.047	0.467	304	365
West Beckingham	East Midlands	PL178	\$K/78b.\$K/79d	521	751.8	1.452	2.565	0.050	0.502	304	195
Chorlton	North West	PEDL188	SJ/45	24,700	180.3	0.807	2.655	0.050	0.573	304	2,108
Upton	North West	PEDL189	SJ/46	24,700	672.0	0.807	2.655	0.050	0.581	304	7,948
Four Oaks /Doe Green	North West	PEDL145	\$J/58b. \$J/58c, \$J/58d	18,362	581.4	0.807	2.655	0.047	0.611	304	5,059
Ellesmere Part	North West	PEDL184	\$J/27. \$J/28. \$J/37	72,272	354.1	0.807	2.655	0.049	0.429	304	9,462
Ince Marshes	North West	PEDL190	\$J/47	23,092	734.0	0.807	2.655	0.050	0.479	304	6,971
Parkside /Irlam	North West	PEDL193	SJ/68. SJ/69e. SJ/79	73,186	363.4	0.807	2.655	0.045	0.538	304	11,025
Burtonwood	North West	EXL 273	\$J/59a	11,856	395.0	0.807	2.655	0.045	0.564	304	2,030
Blacon	North West	PEDL147	\$J/36a	21,983	757.8	0.807	2.655	0.055	0.558	304	8,349
Sandbach	North West	PEDL295	\$J64/\$J65	49,400	805.5	0.807	2.655	0.050	0.534	304	17,819
Crewe	North West	PEDL293	SJ75/SJ76	49,400	1.083.2	0.807	2.655	0.049	0.576	304	24,801

Arithmetic Summation 221,065

Notes

1. At the request of IGas an estimate of gas in-place using BGS methodology was performed.